экосистем): учеб. пособие / Е. А. Зилов. — Иркутск: Изд-во Иркут. гос. ун-та, 2009. — 147 с. 3. ГН 2.1.5.1315-03 «Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования». Доступ из справ.-правовой системы «КонсультантПлюс».

УДК 581.48:574.22

АРТЁМЕНКО К.И., студент

Научные руководители - **ВОДЧИЦ Н.В.**, заведующий отраслевой лабораторией «ДНК и клеточных технологий в растениеводстве и животноводстве»; **ГЕРАСИМОВИЧ Т.В.**, мл. науч. сотрудник

УО «Полесский государственный университет», г. Пинск, Республика Беларусь

РАЗМНОЖЕНИЕ ЛЮТИКА АЗИАТСКОГО (RANUNCULUS ASIATICUS) С ИСПОЛЬЗОВАНИЕМ СТЕРИЛЬНЫХ И НЕСТЕРИЛЬНЫХ СЕМЯН

Введение. Семейство лютиковых включает около 50 родов и свыше 2000 видов. Декоративные виды, которые встречаются чаще всего, — это разные сорта лютика азиатского (*Ranunculus Asiaticus*). Цветы используется на срезку, в садовых композициях и флористике [1, с. 35]. Размножение данной культуры в некоторой степени затруднено. Семена растений в большинстве случаев имеют пониженную всхожесть даже при благоприятных для данного вида условиях. Кроме того, лютик азиатский характеризуется ослабленной способностью к формированию дочерних шишек [2, с. 31].

Цель работы – провести сравнительный анализ выхода растений из стерильных и нестерильных семян лютика азиатского.

Материалы и методы исследований. Исследования проводили на базе отраслевой лаборатории «ДНК и клеточных технологий в растениеводстве и животноводстве» биотехнологического факультета УО «Полесский государственный университет» в мартеапреле 2021 года.

В качестве объекта исследований использовали внешне однотипные стерильные и нестерильные семена лютика азиатскогопо 6 штук в каждом варианте. Нестерильные проращивались в банках на влажной фильтровальной бумаге по общепринятой методике [3, с. 409]. Для ввода стерильных семян в культуру *in vitro* были использованы растворы хлороцида и фунгицидов. После стерилизации семена проращивали в банках, экспланты высаживали на питательную агаризованную среду Мурасиге-Скуга (МS). Емкости с семенами и эксплантами размещали на стеллажах световой установки культурального помещения при температуре +25 °C, фотопериоде день/ночь – 16/8 ч, освещенности 4000 лк, относительной влажности воздуха 70%. Учет количества проросших семян и эксплантов проводили каждые 2 дня в течение одного месяца культивирования.

Результаты исследований. По данным литературных источников проращивание семян лютика азиатского занимает от одного месяца до 45 дней в условиях стратификации. Однако даже при благоприятных условиях лютик азиатский имеет пониженную всхожесть или же не всходит вовсе. Причиной этому является снижение нормальной выполненности, т.е. щуплость семян — явление, связанное с деформацией оболочек и биохимическими процессами, происходящими в семенах. Изменение соотношения элементов фактора деления в процессе их развития влияет на регуляции роста и формообразования эндосперма и зародыша [4, с. 41].

В нашем случае на 10-й день от начала эксперимента проросли два нестерильных семени. Вероятно, нам удалось подобрать оптимальные условия, так как скорость прорастания определяется уровнем влажности, света и свободным доступом кислорода.

На 21-й день у пяти проросших семян имелись семядольные листья и корни. На 28-й день проросли все нестерильные семена, которые были высажены в грунт. Спустя несколько дней они полностью адаптировались к условиям почвы и заметно увеличились в размере.

В лабораторных условиях при обычных методах проращивания нестерильных семян на влажной фильтровальной бумаге часто происходит контаминация всходов, что крайне нежелательно. Использование методов стерилизации и проращивания семян *in vitro*, а также применение регуляторов роста является перспективным подходом для проращивания семян видов, имеющих затрудненияпри использовании традиционных методов [5, с. 23].

На 19-й день от начала эксперимента из шести стерильных семян проросло одно, на 33 день — еще 3 штуки. На 26-й и 33-й день стерильные проростки, имеющие семядольные листья был высажены на питательную агаризованную среду MS.

Такая задержка вразвитии проростковсвязана с негативным влиянием стерилизующих агентов на зародыш семени [3, с. 411].

Заключение. При подборе оптимальных условий на влажной фильтровальной бумаге процесс прорастания семян лютика азиатского происходит гораздо быстрее. На 10-й день от начала эксперимента проросли первые нестерильные семена, на 28-й день проросли все.

На 19-й день проросло первое стерильное семя, на 33-й день еще три штуки. При использовании стерилизующих агентов для ввода семян в культуру *in vitro* следует учитывать, что стерилизация снижает скорость прорастания семян и развитие проростков.

Литература. 1. Эрст, А. С. Полезные виды рода Ranunculus L. (Лютик) Алтайской горной страны / А. С. Эрст // Вестн. Алтайского.гос. агр. ун-та, Агроэкология. — 2008. — № 4 (42). — С. 34—37. 2. Колясникова, Н. Л. Биология размножения растений : учеб.пособие / Н. Л. Колясникова. — М-во с.-х. РФ, федеральное гос. бюджетное образов. учреждение высшего образования «Пермская гос. с.-х. акад. им. акад. Д. Н. Прянишникова». — Пермь : ИПЦ «Прокрость», 2017. — 105 с. 3. Кузнецова, Е. Н. Особенности прорастания семян редкого растения Asteramellus L. в культуре in vitro / Е. Н. Кузнецова, О. Г. Баранова // Вестн. Удмурдского гос. ун-та. — 2017. — № 3. — С. 409—411. 4. Физиология семян / К. Н. Данович [и др] ; под ред. А. А. Прокофьева. — М. : Наука, 1982. — 318 с. 5. Полубоярова, Т. В. Проращивание семян дикорастущих видов луков рода Allium L. подрода теlапостоттушт webbetberth. в условиях in vitro / Т. В. Полубоярова, Т. И. Новикова // Вестн. Алтайского аграрного университета. — 2009. — № 1 (51). — С. 22—26.

УДК 597.2(476)

КОНДРАТЕНЯ И.Е., студент

Научный руководитель - ПРИТЫЧЕНКО А.В., канд. вет. наук, доцент

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

РАЗНООБРАЗИЕ ИХТИОФАУНЫ РЕК БЕЛАРУСИ

Введение. На территории Республики Беларусь насчитывается 64 вида рыб. В период 60-х годов прошлого столетия по данным П.И. Жукова (1988) ихтиофауна состояла из 49 видов рыб, дальнейшие изыскания и интенсификация отрасли рыбоводства расширили видовой состав в 2000-х годах до 58, а к 2015 году были обнаружены такие рыбы, как пелядь, американский сомик, серебряный карась, бычок-песочник И радужная форель. Одновременно с этим имело место снижение численности ряда высокоценных видов, таких как: лосось, кумжа, вырезуб, осётр русский, осётр балтийский, севрюга, белуга. Учитывая биологию данных пород, миграция и воспроизводство их практически прекратились под мощным влиянием антропогенных факторов разнообразного происхождения, в том числе промыслового и любительского рыболовства [1, 2, 3, 4]. Таким образом, отмечено существенное изменение состава ихтиофауны, причём всего ихтиоценоза в целом. Учитывая вышесказанное, целью нашей работы явилось изучение ихтиофауны естественных водоёмов.

Материалы и методы исследований. Изучение и теоретический анализ литературных источников, результаты собственных наблюдений.

Результаты исследований. С начала 60-х годов прошлого века начато активное