- 4. Против Amorentus retroflexus L., Poa annua L.. наибольшее снижение численности сорняков было достигнуто в варианте с двукратным применением гербицида.
- 5. При трехкратном применении наибольшая биологическая эффективность препарата была получена против Chenopodium album L., Polygonum aviculare L., Matricaria inodora L., Raphanus raphanistrum L..
- 6. Вариант с трехкратным применением бетанала прогресс АМ 18 %-ный к.э. обеспечил наиболее надежную защиту культуры от сорияков, где биологическая эффективность составила 90.5%, что значительно выше, чем при однократном применении 79.4%.

На основании вышеизложенного можно сделать вывод, что трехкратная обработка гербицидом бетанал прогресс АМ 18 %-ный к.э. в смеси с поаст плюс 12 %-ный к.э. является наиболсе эффективной при защите сахарной свеклы от сорняков.

ЛИТЕРАТУРА. 1. Паденов К.П., Самерсов В.Ф. Сорные растения в Белоруссии// Защита растений и карантин. - 1997. - № 1 - С. 18-19. 2. Доспехов В.А. Методика полевого опыта (с основами статической обработки результатов). - М., 1979. - 416 с.

УДК 632.954:633.1

ПОСЛЕДЕЙСТВИЕ ГЕРБИЦИДА БЕТАНАЛ-ПРОГРЕСС АМ 18%-НЫЙ К.Э. НА ПРОДУКТИВНОСТЬ ЗЕРНОВЫХ КУЛЬТУР

н.а. лукьянюк

Белорусская сельскохозяйственная академия

В связи с различными биологическими особенностями сельскохозяйственных культур гербициды и способ их применения могут влиять на продуктивность последующих культур. В Республике Беларусь для борьбы с сорной растительностью на посевах сахарной свеклы рекомендован ряд высокоэффективных гербицидов, однако их последействие на культуры севооборота изучено слабо. В связи с чем данный вопрос приобретает особую актуальность [1].

Опыт был заложен в 1997-98 годах в колхозе "Искра" Брестского района на дерново-подголистых супесчаных почвах подстилаемых море-

ной. Содержание тумуса 1.37%, подвижных форм фосфора 218 мг/кг, калия 129 мг/кг; pH_{KCL} = 5.75.

Каждый вариант опыта закладывался в 4-кратной повторности по схеме предназначенной для изучения эффективности гербицида под сахарную свеклу в предыдущем году: 1) контроль (без прополки); 2) контроль (ручная прополка); 3) бетанал прогресс АМ 18%-ный к.э. 5.0 л/га (обработка в фазу 2-х пар листьев у сорняков); 4) бетанал прогресс АМ 18%-ный к.э. 2.0+3.0 л/га (обработка по мере появления 1-ой пары листьев у сорняков); 5) бетанал прогресс АМ 18%-ный к.э. 1.5+1.5+2.0 л/га (обработка по мере появления семядольных листьев у сорняков). При последней обработке гербицидом бетанал-прогресс АМ 18%-ный к.э. применяли баковую смесь с гербицидом Поаст плюс 12%-ный к.э. - 2.0 л/га,

Размещение делянок рендомизированное, одноярусное с защитными полосами. Размер учетной делянки 25м². Материал для закладки опыта -в 1997 году сорт ячменя-Гонар, в 1998 году сорт яровой пшеницы-Иволга. Агротехника возделывания общепринятая для данной зоны. Учет структуры урожая производили методом отбора снопа в 4-х местах каждой делянки с площади 0,25 м² [2].

В результате проведенных исследований было установлено, что препарат бетанал прогресс АМ 18%-ный к.э. в смеси с поаст плос 12%-ный к.э. снижают урожайность зерновых культур на 15.0-24.4 %, однако степень влияния препарата зависит от способов его применения. Так, в оба года исследований наименьшее снижение урожая зерновых культур было получено при применении гербицида в три срока.

Структура	v рожая	зерновых	культур
	JPOMO	och i oppin	

№ ==/	Число растений шт/м²		Общая кустис- тость		Продукт. кусти- стость		Мясея 1000 зе- рен,г		Число зерен в колосе, шт		Масса колоса,г		Урожий, п/га		Сниж. уражяя, % к хонтр.	
	1997	1998	1997	1998	1997	1998	1997	1998	1997	1998	1997	1998	1997	1998	1997	1998
ī	344	464	1.55	1.53	1.36	1.02	52.0	42.5	17.3	11.3	0.90	0.67	42.0	31.8	69.1	64.1
2	360	424	1.51	1.51	1.42	1.14	58 7	42.0	22.1	24.3	1.19	1.02	60.8	49.2	100	100
3	364	348	1.86	1.63	1.63	1.34	52.0	45.0	15.2	13.8	0.79	0.81	45.7	37.7	76.8	76.6
4	408	356	1.41	1.54	1.31	1.12	45.0	46.2	20.0	18.4	0.90	1.00	48.1	40.2	79.1	81.7
5	424	356	1.41	1.40	1.38	1.13	48.0	46.0	18.5	19.3	0.89	1.03	51.9	41.8	85.4	85.0

Основные элементы структуры урожая представлены в таблице, из которой следует, что с увеличением кратности обработок увеличивается густота стояниярастений, однако показатели общей и продуктивной кус-

тистости имеют обратную зависимость. Данная закономерность наблюдалась в оба года исследований.

Масса 1000 зерен ячменя была наибольшей при однократном, а у пшеницы при дробном применении гербицида. Озерненность и масса колоса в оба года исследований была значительно выше в вариантах с дробным применением, однако уступала варианту с ручной прополжой.

Таким образом, основными элементами, снижающими урожайность при однократном применении гербицида, являются густога стояния растений, озерненность и масса колоса. Из вышеизложенного можно сделать вывод, что использование гербицида бетаннал прогресс АМ дробно в смеси с поаст плюс оказывает наименьшее отрицательное воздействие на рост и развитие зерновых культур.

ЛИТЕРАТУРА: 1. Химические средства борьбы с сорняками/ Под ред. Н.М.Жиршунской.- М.: Агропромиздат, 1986.- 413 с. 2. Доспехов В.А. Методика полевого опыта (с основами статической обработки результатов). - М., 1979. - 416 с.

УДК 619:616.993.192.1:636.4

ПРОФИЛАКТИЧЕСКИЕ СВОЙСТВА ЛИЗОСУБТИЛИНА Г10Х ПРИ ЭЙМЕРИОЗЕ КРОЛИКОВ

Т.В.МЕДВЕДСКАЯ

Витебская государственная академия ветеринарной медицины

В клинике кафедры паразитологии на трехмесячных крольчатах, разделенных на 3 группы, по 8 голов в каждой, проведен опыт по применению лизосубтилина Г10х при эймериозе. При этом животные 1 группы были контрольными и препарат не получали, 11 - скармливали с кормом 20 мг лизосубтилина Г10х, III - 30 мг/кг живой массы.

Лизосубтилин Г10х - комплексный ферментный препарат, представляет собой мелкий порошок светло-бежевого цвета, хорошо растворим в воде. Назначали его больных животным групповым методом с кормом, в утреннее кормление, в течение 14 дней. Эффективность препарата спределяли путём клинических, гематологических и копроскопических исследований, производимых ежедневно в период опыта.