Зоотехния

DOI 10.52368/2078-0109-2021-57-4-32-36 УДК 636.13.082.2

ЧАСТОТА ВСТРЕЧАЕМОСТИ ГЕНА-МАРКЕРА PPARGC1a У ЛОШАДЕЙ ТРАКЕНЕНСКОЙ И ГАННОВЕРСКОЙ ПОРОД

Вишневец A.B. ORCID iD 0000-0003-2158-7691, Будревич О.Л. ORCID iD 0000-0002-9554-1875

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Представлены результаты исследования полиморфизма гена PPARGC1 α (1- α -коактиватор гаммарецептора) у лошадей тракененской и ганноверской пород. Наибольшая частота встречаемости аллеля С гена PPARGC1 α (0,985 и 0,976) и генотипа PPARGC1 α (97,96 и 95,24%) установлена у лошадей тракененской и ганноверской пород. **Ключевые слова:** лошади, ген PPARGC1 α , аллель, порода, частота встречаемости, генотип.

FREQUENCY OF THE *PPARGC1a* MARKER GENE IN HORSES OF TRAKEHNER AND HANOVERIAN BREEDS

Vishnevets A.V., Budrevich A.L.

Vitebsk State Academy of Veterinary Medicine, Vitebsk, Republic of Belarus

The article presents the results of research on the PPARGC1 α gene polymorphism (1- α -coactivator of the gamma receptor) in Trakehner and Hanoverian horses. The highest frequency of the C allele of the PPARGC1 α gene (0.985 and 0.976) and the PPARGC1 α genotype (97.96 and 95.24%) was found in Trakehner and Hanoverian horses. **Keywords**: horses, PPARGC1 α gene, allele, breed, frequency, genotype.

Введение. Племенная работа в коневодстве преследует ряд целей. Основной из них следует считать совершенствование пород лошадей в направлении развития у них наиболее важных в настоящее время качеств. Второй задачей нужно считать создание новых, более отвечающих требованиям хозяйственного или спортивного использования пород лошадей [3].

В Республике Беларусь разводят лошадей немецкого происхождения – тракененскую и ганноверскую. В небольшом количестве имеются лошади и других полукровных пород, которые являются успешными в различных видах конного спорта [1].

В нашей республике коневоды уже добились некоторых спортивных результатов. На лошадях тракененской и других пород, выращенных в учреждении «Республиканский центр по конному спорту и коневодству», которое создано на базе Минского конного завода имени Л.М. Доватора и Республиканской специализированной детско-юношеской школы Олимпийского резерва, а в 2005 году перечименовано в учреждение «Республиканский центр олимпийской подготовки конного спорта и коневодства», установлен ряд рекордов, что подтверждает практическую значимость и возможности развития конного спорта в нашей республике [6].

Учреждение «Республиканский центр олимпийской подготовки конного спорта и коневодства» располагает современной материально-технической базой, спортивными сооружениями, соответствующей инфраструктурой для подготовки спортсменов национальной и сборных команд Республики Беларусь по всем олимпийским видам конного спорта, проведения спортивных соревнований республиканского и международного уровня [5].

В отличие от ряда других отраслей животноводства, в которых широко практикуется крупномасштабная селекция, при племенной работе в коневодстве традиционно применяется индивидуальная система отбора и подбора, что является важной предпосылкой для внедрения методов маркерной селекции в повседневную коневодческую практику.

Очевидные успехи в развитии молекулярно-генетических и информационных технологий в течение последних десятилетий дали мощный старт для изучения геномов сельскохозяйственных животных, что позволило применить на практике многие достижения маркер-вспомогательной и приступить к геномной селекции.

Благодаря появлению технологии полногеномного сканирования и чипов высокой плотности (Illumina 50K, 54K, 70K SNP) ученым удалось выявить локализацию генов, определяющих многие селекционируемые признаки, включающие скаковую и спортивную работоспособность лошадей.

Немецким ученым из Ганновера удалось выявить локализацию генов, определяющих спортив-

ную работоспособность лошадей. Оказалось, что конкурные качества лошадей статистически значимо зависят от генов, локализованных в хромосомах 1, 8, 14, 16, 17 и 23, тогда как способность к выездке определяют гены 1, 3, 5, 16 и 17 хромосом.

К поиску генов, ассоциированных со спортивными способностями лошадей, подключились и французские генетики S. Brand и A. Ricard, которыми было проведено полногеномное тестирование 1010 спортивных лошадей четырех разных пород. Детальный генетико-математический анализ позволил идентифицировать «конкурный» ген RYR2, локализованный в хромосоме 1, и показал, что тестирование лошадей по этому локусу дает определенный селекционный эффект. С использованием ассоциативного анализа было доказано, что гены, расположенные на хромосомах 11 и 16, взаимосвязаны с конкурными качествами лошадей, но при этом прослеживалось и определенное влияние породных особенностей [7].

Мышечная работа спортивных лошадей сопряжена со значительными энергетическими затратами, поэтому большое внимание следует уделить показателям, характеризующим адаптации физиологических систем организма, направленных на обеспечение кислородного запаса [2].

Одним из генов-маркеров является ген $PPARGC1\alpha$ (1-альфа коактиватор гамма рецептора), который кодирует белок-1-α-коактиватор гамма-рецептора, активируемого пролифераторами пероксисом (PGC-1α), который выступает в качестве коактиватора в процессе активации ряда транскрипционных факторов, регулирует митохондриальный биогенез, окисление жирных кислот, утилизацию глюкозы, процессы клеточного дыхания и обмен веществ.

Ген *PPARGC1α* лошади локализован на хромосоме 3 и состоит из 13 экзонов. Длина транскрипта составляет 2814 п.н., а протеина – 796 а.о. Полиморфизм ассоциирован с проявлением скоростносиловых качеств, высокой работоспособностью, мышечной и аэробной выносливостью. PPARGC1α экспрессируется преимущественно в сердце, скелетных мышцах и почках, а также в меньшей степени в печени, тканях мозга и поджелудочной железы. Снижение экспрессии гена PPARGC1lpha приводит к ухудшению аэробных возможностей, что связано с уменьшением количества транскрипционных факторов, необходимых для митохондриального биогенеза и окислительных ферментов в скелетных мышцах [4, 9].

Исследователи также пришли к выводу, что нарушение функций митохондрий может лежать в основе зависимости между ухудшением физической формы и развитием сердечно-сосудистых и метаболических заболеваний [4].

Целью исследования является изучение полиморфизма гена PPARGC1lpha у современных лошадей тракененской и ганноверской пород, выступающих в классических видах конного спорта (выездка, конкур, троеборье).

Материалы и методы исследований. Материалом для исследований служили биологические пробы (волосяные луковицы) 87 исследуемых лошадей верховых пород (тракененская и ганноверская) учреждения «Республиканский центр олимпийской подготовки конного спорта и коневодства» Минского района.

ДНК выделяли методом сорбентной экстракции, используя наборы «АртДНК» (ОДО «АртБио-Tex», PБ). Для амплификации использовали полимеразную цепную реакцию (ПЦР). Генотипирование лошадей по гену *PPARGC1α* проводилось методом анализа полиморфизма длин рестрикционных фрагментов (ПДРФ).

Для амплификации участка гена PPARGC1α использовали прямой и обратный праймеры следующего состава:

```
PPARGC1α: 5'- AGCTGGAATCCACTTGGAGA - 3';
PPARGC1α: 5' - GGGCTACNNTTCTCGCTCCT - 3'.
```

Программа амплификации для гена *PPARGC1α* следующая: «горячий старт» – 5 минут при 94°C, 32 цикла: денатурация – 45 сек. при 94°C, отжиг – 45 сек. при 55°C, синтез – 45 сек. при 72°C; элонгация – 5 минут при 72°C.

Длина амплифицированного фрагмента – 529 п.о.

Для проведения рестрикционного анализа по гену PPARGC1α использовали рестриктазу BsaHI (GR↓CGYC) (Sibenzyme, Россия).

Идентификацию генотипа проводили с помощью горизонтального электрофореза при напряжении 5 В/см геля в 1,7% агарозе в трисборатном буфере в присутствии интеркаллирующего красителя (бромистый этидий) в течение 35 минут. Рестриктаза разрезает продукт амплификации в зависимости от генотипа по гену *PPARGC1α* на фрагменты.

При расщеплении продуктов амплификации рестриктазой BsaHI идентифицируются следующие генотипы:

```
- PPARGC1\alpha^{GG} – 529 π.ο.;
- PPARGC1\alpha^{GC} – 529 π.ο., 327 π.ο., 202+183 π.ο.;
- PPARGC1\alpha^{CC} – 327 π.ο., 202+183 π.ο. [9].
```

Электрофореграмма продуктов амплификации и рестрикции участка гена *PPARGC1α* представлена на рисунке 1.

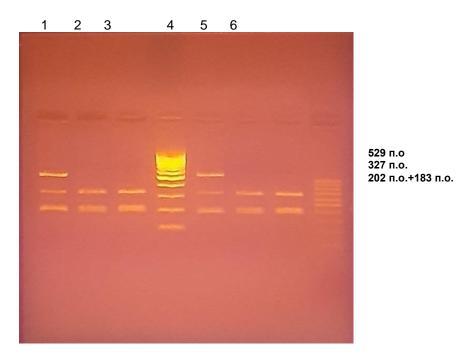


Рисунок 1 – Электрофореграмма продуктов амплификации и рестрикции участка гена *PPARGC1* α : дорожки 1 и 4 соответствуют генотипу *PPARGC1* α ^{GC}, дорожки 2, 3, 5 и 6 – *PPARGC1* α ^{CC}

Частоту встречаемости аллелей и генотипов гена *PPARGC1α* у лошадей определяли по формулам 1, 2 и 3:

$$pA = \frac{2AA + AB}{2n},$$

$$qB = \frac{2BB + AB}{2n},$$
(1)

где pA, qB – частоты аллелей;

АА, ВВ – число особей с гомозиготным генотипом;

АВ – число особей с гетерозиготным генотипом;

n – общее число особей.

$$p^2 + 2pq + q^2 = 1, (3)$$

где p и q – частоты соответствующих аллелей.

Статистическую обработку результатов исследований выполняли на персональном компьютере с использованием программы «Microsoft Excel 2010».

Результаты исследований. Исследуемое поголовье лошадей представлено двумя породами: тракененская -75,9%, или 66 голов и ганноверская -24,1%, или 21 голова. На долю меринов приходится большая часть -51,7%, из них 44,8% — тракененской породы и 6,9% — ганноверской, жеребцов на 19,5% меньше (тракененской породы -23,0%, ганноверской -9,2%), а кобыл в два раза меньше, чем жеребцов (по 8,05% каждой из исследуемых пород).

В результате проведенного молекулярно-генетического анализа 87 лошадей учреждения «Республиканский центр олимпийской подготовки конного спорта и коневодства» по гену $PPARGC1\alpha$ установлено, что среди исследуемых лошадей выявлено 84 головы, гомозиготных по аллелю C, гетерозиготных — 3 головы, и по аллелю C не выявлено ни одной. Из них тракененской породы 64 головы гомозиготных по аллелю C и гетерозиготных — 2 головы. Среди лошадей ганноверской породы 20 — гомозиготны по аллелю C и 1 — гетерозиготна.

Была определена частота встречаемости аллелей гена *PPARGC1α* у лошадей тракененской и ганноверской пород, которая представлена на рисунке 2.

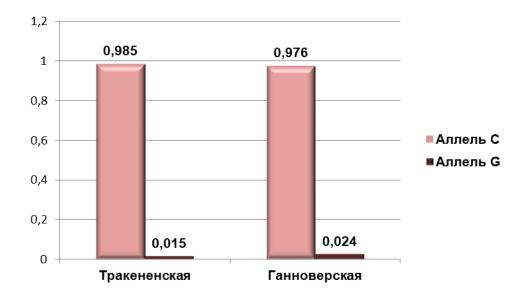


Рисунок 2 – Частота встречаемости аллелей гена *PPARGC1α* у лошадей верховых пород, ед.

В результате проведенного молекулярно-генетического анализа установлено, что частота встречаемости аллеля C гена $PPARGC1\alpha$ среди исследуемых лошадей значительно преобладает, что согласуется с данными, полученными зарубежными коллегами [8]. У лошадей тракененской и ганноверской пород частота встречаемости аллеля C гена $PPARGC1\alpha$ составила 0,985 и 0,976 соответственно, а частота встречаемости аллеля G – всего 0,015 и 0,024. В среднем по всему поголовью частота встречаемости аллелей C и C0 составила 0,983 и 0,017 соответственно.

Была определена частота встречаемости генотипов гена *PPARGC1α* у лошадей тракененской и ганноверской пород, которая представлена на рисунке 3.

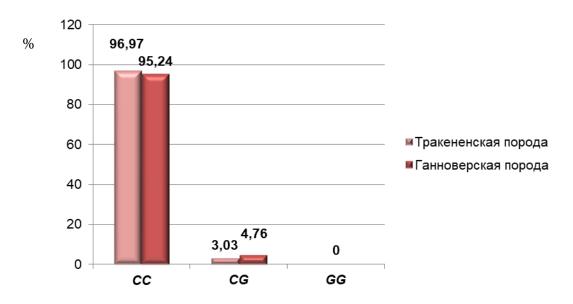


Рисунок 3 – Частота встречаемости генотипов гена *PPARGC1α* у лошадей тракененской и ганноверской пород, %

В результате ДНК-диагностики у лошадей исследуемых пород установлена наибольшая частота встречаемости генотипа $PPARGC1\alpha^{CC}$. У лошадей тракененской породы частота встречаемости генотипа $PPARGC1\alpha^{CC}$ немного больше, чем у лошадей ганноверской породы, что составляет 96,97 и 95,24% соответственно. А частота встречаемости генотипа $PPARGC1\alpha^{CG}$ очень низкая и составила 4,76% у лошадей ганноверской породы и 3,03% у лошадей тракененской породы. Генотип $PPARGC1\alpha^{GG}$ у лошадей исследуемых пород не установлен.

Заключение. Установлено, что частота встречаемости аллеля C гена $PPARGC1\alpha$ у лошадей тракененской и ганноверской пород преобладает и составляет 0,985 и 0,976, а частота встречаемости аллеля G – 0,015 и 0,025 соответственно.

Установлено, что у лошадей тракененской и ганноверской пород частота встречаемости генотипа $PPARGC1\alpha^{CC}$ соответственно 96,97 и 95,24%, очень редко встречается генотип $PPARGC1\alpha^{CG}$ – 3,03 и 4,76% соответственно. Генотип $PPARGC1\alpha^{GG}$ у лошадей исследуемых пород не установлен.

Conclusion. It was found that the frequency of the C allele of the PPARGC1 α gene in Trakehner and Hanoverian horses predominates and amounts to 0.985 and 0.976, and the frequency of the G allele is 0.015 and 0.025, respectively. It was found that in horses of Trakehner and Hanoverian breeds, the frequency of the PPARGC1 α^{CC} genotype is 96.97 and 95.24%, respectively, the PPARGC1 α^{CC} genotype is very rare – 3.03 and 4.76%, respectively. The PPARGC1 α^{CC} genotype in horses of the studied breeds has not been established.

Список литературы. 1. Герман, Ю. И. Система разведения лошадей верховых пород в Республике Беларусь / И. Ю. Герман // Весці Нацыянальнай акадэміі навук Беларусі. Серыя аграрных навук. – 2018. – Т. 56, № 1. – С. 65–74. 2. Дайлиденок, В. Н. Спортивная работоспособность и адаптационные качества лошадей тракененской породы / В. Н. Дайлиденок // Актуальные проблемы интенсивного развития животноводства : сб. науч. тр. / Белорусская государственная сельскохозяйственная академия. – Горки, 2013. – Вып. 16, ч. 2. – С. 126-133. З. Козлов, С. А. Коневодство : учебник для студентов высш. учебных заведений, обучающихся по направлению «Зоотехния» / С. А. Козлов, В. А. Парфенов. – М. : КолосС, 2012. – 352 с. 4. Козлова, А. С. Полиморфизм генов ACTN3 и PPARGC1A у элитных спортсменов / А. С. Козлова, Т. Л. Лебедь, А. С. Баранов // Научные труды НИИ физической культуры и спорта Республики Беларусь: сб. науч. тр. / Научноисследовательский институт физической культуры и спорта Республики Беларусь. – Минск, 2012. – Вып. 11. С. 253-259. 5. Программа развития конного спорта и подготовки национальной команды Республики Беларусь на 2017-2020 годы. – Минск, 2017. – 23 с. 6. Финогенов, А. Ю. Спортивное коневодство в Республике Беларусь / А. Ю. Финогенов, Н. Н. Андросик // Экология и животный мир. – 2007. – № 2. – С. 14–18. 7. Храброва, Л. А. Прогресс ДНК-технологий в коневодстве / Л. А. Храброва, Е. И. Алексеева // Известия Санкт-Петербургского государственного аграрного университета. – 2015. – № 39. – С. 149–154. 8. Detection and analysis of polymorphism in the promoter region of equine PPARCG1A gene / D. Polasik [et al] // The Journal of Animal & Plant Sciences. - 2017. - Vol. 27(2). - P.691-695. 9. Polasik, D. Detection and analysis of polymorphism in the promoter region of equine PPARCG1α gene / D. Polasik [et al] // The Journal of Animal & Plant Sciences. - 2017. - Vol. 27(2)/- P. 691-695.

References. 1. German, Yu. I. Sistema razvedeniya loshadej verhovyh porod v Respublike Belarus' / I. YU. German // Vesci Nacyyanal'naj akademii navuk Belarusi. Seryya agrarnyh navuk. – 2018. – T. 56, № 1. – S. 65–74. 2. Dajlidenok, V. N. Sportivnaya rabotosposobnosť i adaptacionnye kachestva loshadej trakenenskoj porody / V. N. Dajlidenok // Aktual'nye problemy intensivnogo razvitiya zhivotnovodstva : sb. nauch. tr. / Belorusskaya gosudarstvennaya sel'skohozyajstvennaya akademiya. - Gorki, 2013. - Vyp. 16, ch. 2. - S. 126-133. 3. Kozlov, S. A. Konevodstvo : uchebnik dlya studentov vyssh. uchebnyh zavedenij, obuchayushchihsya po napravleniyu «Zootekhniya» / S. A. Kozlov, V. A. Parfenov. - M.: KolosS, 2012. - 352 s. 4. Kozlova, A. S. Polimorfizm genov ACTN3 i PPARGC1A u elitnyh sportsmenov / A. S. Kozlova, T. L. Lebed', A. S. Baranov // Nauchnye trudy NII fizicheskoj kul'tury i sporta Respubliki Belarus': sb. nauch. tr. / Nauchno-issledovateľskij institut fizicheskoj kuľtury i sporta Respubliki Belarus'. – Minsk, 2012. – Vyp. 11. – S. 253-259. 5. Programma razvitiya konnogo sporta i podgotovki nacional'noj komandy Respubliki Belarus' na 2017-2020 gody. - Minsk, 2017. - 23 s. 6. Finogenov, A. YU. Sportivnoe konevodstvo v Respublike Belarus' / A. YU. Finogenov, N. N. Androsik // Ekologiya i zhivotnyj mir. - 2007. - № 2. - S. 14-18. 7. Hrabrova, L. A. Progress DNKtekhnologij v konevodstve / L. A. Hrabrova, E. I. Alekseeva // Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta. – 2015. – № 39. – S. 149–154. 8. Detection and analysis of polymorphism in the promoter region of equine PPARCG1A gene / D. Polasik [et al] // The Journal of Animal & Plant Sciences. – 2017. – Vol. 27(2). – P.691– 695. 9. Polasik, D. Detection and analysis of polymorphism in the promoter region of equine PPARCG1α gene / D. Polasik [et al] // The Journal of Animal & Plant Sciences. – 2017. – Vol. 27(2)/ – P. 691–695.

Поступила в редакцию 04.10.2021.