ИЗУЧЕНИЕ ПРОТИВОВИРУСНОЙ АКТИВНОСТИ ВОДНОЙ СУСПЕНЗИИ БЕРЕСТЫ

*Красочко П.А., *Мороз Д.Н., **Борисовец Д.С., **Зуйкевич Т.А.

*УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины, г. Витебск, Республика Беларусь
**РУП «Институт экспериментальной ветеринарии им. С.Н. Вышелесского»,

г. Минск, Республика Беларусь

Введение. В современных условиях ведения животноводства вирусные инфекции играют ведущую роль. В этиологической структуре вирусных инфекций чаще встречается вирус инфекционного ринотрахеита, парагрипп-3, вирус диареи, респираторно-синтициальный вирус, рота- и коронавирусы и т.д. Вирус инфекционного ринотрахеита и диареи наиболее чаще поражают новорожденных телят, вызывая поражения желудочно-кишечного тракта, органы дыхания поражаются у телят старше 1-месячного возраста, репродуктивная система поражается у взрослых животных [2, 7, 8].

Поиск новых средств лечения и профилактики вирусной инфекции животных большое значение. Из многочисленных лекарственных применяемых в мировой ветеринарной и медицинской практике, лечебные препараты из растений составляют более 30%. Однако, среди противовирусных лекарственных средств не так уж много препаратов растительного происхождения. Судя по количеству публикаций, интерес к противовирусным свойствам препаратов растительного происхождения возрос в последние десятилетия. При этом представлена информация как о препаратах, получаемых путем переработки лекарственного сырья (например, флакозид из бархата амурского, алпизарин из травы копеечника, хелепин из леспедецы копеечниковой, бересты и др.), так и необработанных экстрактах, как источнике противовирусных свойств [1, 3-6].

Действующими началами В извлечениях ИЗ растений многочисленные вещества (лектины, терпены, соединения полифенольного комплекса). Причем лекарственные растения содержат, как правило, десятки химических групп одновременно. В связи с этим природа противовирусных свойств продуктов растительного происхождения может заключаться именно в их многокомпонентности. Это обстоятельство, несмотря на достаточно умеренную противовирусную активность, способствует более широкому спектру антивирусного действия, преодолению и предотвращению развития лекарственной устойчивости Из индивидуальных веществ растительного происхождения, значительное внимание, в последнее время, уделяется высшим тритерпеноидам в связи с их мультимедикаментозным действием [5, 6, 8].

Важность изучения противовирусных свойств соединений, субстанций и препаратов растительного сырья определяется возможностью создания новых противовирусных лекарственных средств, способов лечения и профилактики вирусных инфекций.

На кафедре эпизоотологии и инфекционных болезней УО ВГАВМ проводится работа по поиску и изучению противовирусных свойств растительных препаратов из природного сырья. Одним из источников таких средств является береста. В процессе работы разработана технология изготовления водной суспензии бересты, которую получают путем экстракции с использованием гидрофильных растворителей при воздействии ультразвука различной мощности и частоты.

Внедрение в ветеринарную практику возможно только после детального исследования его безопасности и изучения фармакологической активности. Одним из показателей биологических свойств водной суспензии бересты является оценка вирулицидной активности.

Цель исследования - изучить противовирусную активность водной суспензии бересты в отношении тест-культуры коронавируса - вируса трансмиссивного гастроэнтерита свиней.

Материалы и методы исследований. Изучение противовирусной активности водной суспензии бересты проводилось в отделе вирусных инфекций РУП «Институте экспериментальной ветеринарии им С.Н. Вышелесского».

В качестве тест-вируса использован вирус трансмиссивного гастроэнтерита свиней (ТГС). Вирус ТГС (семейство *Coronaviridae*, род *Coronavirus*) — РНК-содержащий вирус, относится к группе альфа-коронавирусов, представлен 1-нитевой РНК. Использован штамм «КМИЭВ-10», депонированный в коллекции микроорганизмов РУП «Институт экспериментальной ветеринарии им. С.Н. Вышелесского». Вирус поддерживали в серийных пассажах и титровали на перевиваемой культуре клеток почки эмбриона свиньи СПЭВ. Цитопатическое действие (ЦПД) вируса ТГС проявляется не ранее, чем через 24 часа и характеризуется в начальной стадии появлением мелкозернистой инфильтрации, а затем клетки отторгаются от стекла, оставляя только сеть зернистого материала.

В работе использовали перевиваемую линию клеток почки эмбриона свиньи СПЭВ, депонированную в коллекции культур клеток РУП «Институт экспериментальной ветеринарии им. С.Н. Вышелесского». Клетки культивировали в ростовой питательной среде, представляющей собой среду Игла и среду 199 в соотношении 1:1 с добавлением 10% эмбриональной телячьей сыворотки, 2мМ L-глутамина и антибиотиков (100 Ед/мл пенициллина и 100 мкг/мл стрептомицина). Поддерживающая питательная среда содержала все указанные выше ингредиенты и 2% эмбриональной телячьей сыворотки.

Для приготовления монослоя клеток в плоскодонных 96-луночных планшетах использовали суспензию культуры клеток линий СПЭВ в концентрации 300 тыс. клеток/мл. В лунки плоскодонных 96-луночных планшетов 8-канальной пипеткой вносили по 100 мкл поддерживающей питательной среды, а затем в те же лунки — суспензию клеток СПЭВ (по 100 мкл в каждую). Планшеты с культурами клеток инкубировали в течение 48 ч в термостате при температуре плюс $(37\pm0,5)$ °C в атмосфере с объемной долей углекислого газа $(5,0\pm0,5)$ % и относительной влажностью (75 ± 5) % до формирования в лунках планшет сплошного монослоя, включающего только типичные клетки.

Оценку вирулицидной активности водной суспензии бересты проводили в соответствии с Методическими рекомендациями «Исследование вирулицидных свойств дизинфицирующих и антисептических препаратов» 04.04.96 г. № 67-9610.

В работе использовали неинфицированный монослой культуры клеток СПЭВ. Монослойную культуру клеток СПЭВ отмывали от ростовой среды раствором Хенкса.

На первом этапе готовили разведения водной суспензии бересты на поддерживающей среде от 10⁻¹ до 10⁻¹². Затем вируссодержащую суспензию (титр вируса — 100 ТЦД) и водорастворимую суспензия бересты в различных концентрациях объединяли в соотношении 1:1 и выдерживали 1 час в термостате при 37° С для контакта вируса с образцом препарата.

После этого смесь вносили на монослой клеток в объеме по 0,1 мл на лунку (по 4 лунки на каждое разведение). Затем в культуральные планшеты вносили по 0,1 мл поддерживающей питательной среды.

Планшеты помещали в CO_2 -инкубатор и инкубировали при 5% CO_2 и температуре (37,0±1,0)°С.

В качестве положительного контроля вместо водной суспензии бересты использовали 0,7%-ный раствор формальдегида; в качестве отрицательного контроля вируссодержащую суспензию объединяли в соотношении 1:1 с поддерживающей питательной средой.

Учет реакции проводили путем микроскопирования монослоя клеток спустя 1 сутки после постановки реакции и далее ежедневно с целью определения цитопатических изменений в клетках. Окончательный учет проводили на 4-й день инкубации.

Результат исследований. В таблице 1 приведены результаты оценки вирулицидной активности водной суспензии бересты.

Таблица 1 - Противовирусная активность водной суспензии бересты в отношении вируса трансмиссивного гастроэнтерита свиней (ТГС)

Разведение водной суспензии бересты	Показатели задержки ЦПД вируса
10 ⁻¹	####
10 ⁻²	####
10 ⁻³	+
10 ⁻⁴	+
10 ⁻⁵	+
10 ⁻⁶	++
10 ⁻⁷	++++
10 ⁻⁸	++++
10 ⁻⁹	++++
10 ⁻¹⁰	++++
10 ⁻¹¹	++++
10 ⁻¹²	++++

Примечания: #### - задержка ЦПД;

+ и ++ начальная стадия ЦПД:

++++ - ЦПД во всех лунках.

Из данных таблицы 1 видно, что полное угнетение репродукции вируса под воздействием водной суспензии бересты наблюдается в разведении 10^{-1} и 10^{-2} , в разведении 10^{-3} - 10^{-6} отмечается частичное угнетение цитопатического действия. Более низкие разведения не задерживали репродукцию вируса.

Полученные данные свидетельствуют, что водная суспензия бересты обладает невысоким цитотоксическим и высоким вирулицидным действием.

Заключение. Полученные результаты позволяют использовать водную суспензию бересты для конструирования противовирусных препаратов.

Литература. 1. Биологические препараты для профилактики вирусных заболеваний животных: разработка и производство в Беларуси / П. А. Красочко [и др.]; под ред. Н. А. Ковалева. — Минск: Беларуская Навука, 2016. — 492 с. 2. Иванова, И. П. Инфицированность стад крупного рогатого скота возбудителями респираторных инфекций в хозяйствах Минской области / И. П. Иванова, П. А. Красочко // Актуальные проблемы патологии сельскохозяйственных животных: материалы Международной научно-практической конференции, посвященной 70-летию со дня образования БелНИИЭВ им. С. Н. Вышелесского. — Минск: Белорусский НИИ экспериментальной ветеринарии им. С. Н. Вышелесского, 2000. — С. 105—106. 3. Противовирусные свойства препарата на основе наночастиц серебра / П. А. Красочко, И. А. Красочко, А. Э. Станкуть, С. А. Чижик // Ветеринарна медицина: міжвідомчий тематичний науковий збірник / Національна академія аграрних наук Украіни, Національний науковий центр «Інститут експериментальної і клінічної ветеринарної медицини». — Харків, 2013. — Вип.

97. — С. 526—528. 4. Получение комплексного иммуностимулирующего противовирусного препарата на основе двуспиральной РНК и липополисахаридов бактерий / П. А. Красочко [и др.] // Ветеринарный журнал Беларуси. — 2018. — № 1. — С. 6—9. 5. Савинова, О. В. Противовирусные свойства препаратов из растительного сырья и веществ, полученных на его основе : дис. ... канд. биол. наук / О. В. Савинова. - Минск, 2018. — 110 с. 6. Красочко, П. А. Противовирусные и антибактериальные свойства наночастиц серебра / П. А. Красочко, А. Э. Станкуть // Наше сельское хозяйство. Ветеринария и животноводство. — 2013. — № 6. — С. 64—67. 7. Оценка эпизоотической ситуации по инфекционным энтеритам телят в хозяйствах Витебской области / П. А. Красочко [и др.] // Ветеринарный журнал Беларуси. - 2018. - № 2 (9). - С. 35-39. 8. Машеро, В. А. Этиологическая структура возбудителей респираторных и желудочно-кишечных инфекций телят в Республике Беларусь / В. А. Машеро, П. А. Красочко // Ученые записки учреждения образования «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины». - 2007. - Т. 43, вып. 2. - С. 83-86.

УДК 638.178

ИЗУЧЕНИЕ ТОКСИЧНОСТИ БИОЛОГИЧЕСКИ АКТИВНОЙ СУБСТАНЦИИ НА ОСНОВЕ МЕРВЫ

Красочко П.А., Притыченко А.В., Мороз Д.Н., Шереметова Д.С. УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Введение. Широкое распространение инфекционных болезней молодняка сельскохозяйственных животных требует новых средств и способов их лечения и профилактики [2, 5, 7, 9]

В настоящее время стало актуальным использовать природное сырьё для создания новых экологичных и безопасных лекарственных средств. Важным преимуществом таких препаратов, является высокая иммунобиологическая, биохимическая активность, а также отсутствие токсичных метаболитов способных накапливаться в организме.

К такой группе относят продукты пчеловодства и препараты, приготовленные на их основе, которые уже хорошо себя зарекомендовали в сельском хозяйстве. Продукты пчеловодства давно применяются, как в медицине, так и ветеринарии. К ним относят: мёд, пыльцу, прополис, пергу, маточное молочко, пчелиный яд, воск, пчелиный подмор, забрус, а также мерву. Мерва представляет собой продукт переработки старых сот в воскотопке и содержит остатки мёда, перги, личинок пчёл и др. В совокупности мерва является биологически активным веществом, которое может быть взято за основу при конструировании новых безопасных и эффективных биопрепаратов, представляя исключительный научный и практический интерес [1, 3, 4].

Создание новых кормовых добавок и лекарственных средств на основе безопасных и эффективных субстанций, благодаря их полной безвредности и многостороннему биологическому действию открывает широкие возможности совершенствования схем и методов их применения, а также позволяет получить экологически чистую продукцию при минимальных затратах на её производство.

На кафедре эпизоотологии и инфекционных болезней УО ВГАВМ проводится работа по поиску и изучению новых препаратов из продуктов пчеловодства. Одним из источников таких средств является пасечная мерва. В процессе работы разработана технология изготовления водной суспензии мервы, которую получают путем экстракции с использованием гидрофильных растворителей при воздействии ультразвука различной мощности и частоты.