вентродорсальном положении $-7,5\pm0,53$.

Отсутствие статистической разницы показателей VHS между левым латеральным и правым латеральным положением в пространстве может быть связано с центральным расположением позвоночного столба в теле животного и сходными средними значениями оси сердца и длины позвонков от T4 до T6 на обеих боковых рентгенограммах.

Заключение. Из результатов исследования можно сделать вывод о том, что различия между показателями, полученными при левом и правом латеральном положениями, а также при дорсовентральном и вентродорсальном незначительны. Коэффициент погрешности при изменении положения в плоскости не превышает 2,0 мм. Полученные данные будут полезны для клиницистов мелких домашних животных в качестве сравнительного материала при оценке размеров сердца кошек. Помимо теоретической базы данные исследования могут быть использованы для дальнейших изысканий в области исследования грудного отдела семейства кошачьих.

Литература. Анатомия лошади: (атлас-учебник): [в 3 т.]: Т. 1 / Н. В. Зеленевский. - Санкт-Петербург: ИКЦ, 2007. - 268 с. 2. Vertebral scale system to measure heart size in radiographs of cats / А. L. Litster, J. W. Buchanan: Journal of the American Veterinary Medical Association, 2000/ - 216(2), 210–4. З. Хватов, В. А. Морфология дуги аорты и её ветвей у кошек породы мейн-кун / В. А. Хватов, М. В. Щипакин, С. С. Глушонок // Вестник НГАУ (Новосибирский государственный аграрный университет). − 2022. − № 3(64). − С. 142-148. 4. Ветви дуги аорты соболя (Martes zibellina) / Д.С. Былинская, Н.В. Зеленевский, М.В. Щипакин, Д.В. Васильев // Иппология и ветеринария. - 2022. - № 2(44). - С. 147-155. 5. Рентгенографическая локация дуги аорты и ее ветвей у кошки домашней и рыси евразийской / Н.В. Зеленевский, М.В. Щипакин, Д.С. Былинская [и др.] // Аграрная наука. - 2022. - № 4. - С. 21-25.

УДК 636.296:611.716.5

КУЛАК Р.А., НИКОНОРОВА А.А., студенты

Научные руководители — **Сельманович Л.А.**, канд. вет. наук, доцент; **Карелин Д.Ф.**, ассистент УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

МОРФОЛОГИЯ ПОДЪЯЗЫЧНОЙ КОСТИ ЛАМЫ

Введение. Ламы были одомашнены более четырёх тысячелетий назад на территории нынешнего Перу. Первое описание и изображение встречается в 1553 году. Ламу в основном используют как вьючное животное. Самец переносит за день 27-45 кг на расстояние около 24 км. Самки лам используются только для размножения, их никогда не доят и не навьючивают. Лам выращивают ради шерсти, мяса и кожи. Из жира лам изготавливают свечи. Количество животных на сегодняшний день оценивается в 3 миллиона и постоянно увеличивается, что связано с ростом спроса на шерсть.

Материалы и методы исследований. Цель исследования — изучение и описание строения подъязычной кости ламы. Материалом для исследования послужила подъязычная кость взрослого животного (самец, 2,5 года). Методика исследования включала макропрепарирование и морфометрию.

Результаты исследований. В результате исследований установлено, что непарная подъязычная кость ламы лежит в межчелюстном пространстве и служит опорой для мускулатуры языка, глотки и гортани. Кость длиной 8 см и высотой 2,8 см состоит из непарного поперечно расположенного тела и парных рогов. Тело кости короткое, длиной 0,8 см, шириной 1 см, незначительно округлое и дугообразно изогнуто вперед. От тела в аборальном направлении отходят длинные (3 см) тонкие, палочковидные гортанные или большие рога. Они расположены под прямым углом друг к другу и соединяются со щитовидным хрящом гортани (тиреогиоид). Дорсально от латеральных концов тела,

направленные вверх отходят малые рога (1,5 см), в виде узких, сжатых с боков пластинок. К дорсальным концам которых прикрепляются длинные ветви, состоящие из трех члеников: дистальный до 2,7 см длиной, средний 5,3 см, тонкий, незначительно изогнутый в вентральном направлении и проксимальный, достаточно длинный — 5 см, полностью из хрящевой ткани. Проксимальный членик соединяется с подъязычным отростком каменистой кости. На вентральном крае среднего членика выражен дистально направленный мышечный отросток высотой 0,5 см, шириной 0,7 см, незначительно расширенный у основания.

Заключение. Данные нашего исследования могут быть использованы в ветеринарной хирургии и при проведении ветеринарно-санитарной экспертизы.

Литература. 1. Зеленевский, Н. В. Клиническая анатомия лошади / Н. В. Зеленевский, В. И. Соколов. — СПб: ГИОРД, 2001. — 408 с. 2. Кутенев, П. В. Верблюдоводство. М., 1981 — 226 с. 3. Теленков В. Н. Видовые особенности костей черепа у ламы (Lama glama) / В. Н. Теленков, В. Ю. Шаламов. // Новости науки АПК. — № 2-1 (11). — С. 489-490.

УДК 591.474: 599.723.8 **КУТУЗОВА А.Р.,** студент

Научный руководитель – Былинская Д.С., канд. вет. наук, доцент

ФГБОУ ВО «Санкт-Петербургский государственный университет ветеринарной медицины», г. Санкт-Петербург, Российская Федерация

СУХОЖИЛЬНО-СВЯЗОЧНЫЙ АППАРАТ АВТОПОДИЯ ЗЕБРЫ

Введение. Зебры – непарнокопытные животные, относятся к роду лошади. Наибольшее количество патологий у зебр приходится на опорно-двигательный аппарат, причём чаще всего они встречаются в области кисти и стопы животного. Диагностика и эффективное лечение данных заболеваний невозможны без четкого знания анатомо-топографических особенностей строения дистальных отделов конечностей. В доступных литературных источниках мы не обнаружили сведений, касающихся морфологии сухожильно-связочного аппарата автоподия зебры, так что цель исследования — изучить скелетотопию сухожилий и связок области автоподия зебры и установить их основные морфометрические характеристики.

Материалы и методы исследований. Материалом для исследования послужили тазовые конечности зебры 6-месячного возраста, доставленные на кафедру анатомии животных ФГБОУ ВО СПбГУВМ из частного конного клуба Ленинградской области. При исследовании использовали комплекс морфологических методов: анатомическое препарирование, морфометрию, фотографирование. В ходе препарирования ткани (сухожилия, фасции, мышцы) размягчали в растворе едкого натра. Морфометрия проводилась при помощи электронного штангенциркуля.

Результаты исследований. На дорсальной поверхности стопы расположены сухожилия длинного разгибателя пальца (*m. extensor digitalis longus*) и бокового разгибателя пальца (*m. extensor digitalis lateralis*). Сухожилие длинного разгибателя пальца начинается в области дистальной трети голени. Его ширина ниже скакательного сустава ② 4,92±0,03 мм. Сухожилие бокового разгибателя пальца также начинается в области дистальной трети голени и имеет ширину 7,93±0,05 мм. В области скакательного сустава оно проходит в составе специального желоба, а затем на проксимальной трети плюсны сливается с сухожилием длинного разгибателя, и их волокна плотно переплетаются между собой. На уровне середины плюсны общее сухожилие длинного и бокового разгибателей имеет ширину около 22,45±0,21 мм, а в области путового сустава оно начинает веерообразно расширяться, покрывая дорсальную поверхность венечного сустава и средней фаланги.

На плантарной поверхности стопы расположены сухожилия поверхностного сгибателя пальца (m. flexor digitalis superficialis), глубокого сгибателя пальца (m. flexor digitalis profundus) и третьей межкостной мышцы (m. interosseus tertius). Сухожилие поверхностного