Наивысшим удоем на один день лактации обладали коровы второй группы — 24,17 кг молока на один день лактации, тогда как у животных первой группы был равен 19,41 кг, а третьей — 24,01 кг молока. Различия оказались недостоверными между второй и третьей группами коров и высокодостоверными между особями первой и второй и первой и третьей групп (Р<0,001). Что касается общей продолжительности периода лактации, то этот показатель оказался наивысшим в третьей группе, что составило в среднем 984,48 дней.

Наибольшим сроком использования отличались коровы с уровнем удоя по первой лактации в пределах от 6118 кг молока до 9271 кг — 2,81 лактации. Различия также оказались недостоверными между всеми группами животных.

Таким образом, уровень удоев по первой лактации не оказал значимого влияния на продолжительность хозяйственного использования и пожизненную продуктивность животных.

Заключение. Проведенные исследования по изучению характера влияния паратипических факторов на срок хозяйственного использования коров и их пожизненную продуктивность показали, что в РУСП «Племзавод Кореличи» Кореличского района Гродненской области возраст первого отела оказал значительное влияние на долголетие коров и их пожизненную продуктивность. Наиболее желательным с точки зрения повышения продуктивного долголетия и пожизненной продуктивности оказался более поздний возраст первого отела (в срок соответственно более 30 месяцев 9 дней и 28 месяцев 5 дней). Это, повидимому, объясняется тем, что животные, отличающиеся повышенной интенсивностью роста, первое осеменение которых происходит в более ранние сроки, не отличаются крепостью конституции и поэтому выбывают в более ранние сроки.

Также было установлено, что уровень удоя по первой лактации не оказал значимого влияния на продолжительность хозяйственного использования и пожизненную продуктивность животных в условиях РУСП «Племзавод Кореличи» Кореличского района. Однако имелась тенденция повышения исследуемых показателей с повышением удоя за первую лактацию. Таким образом, было установлено, что не во всех случаях высокий удой по первой лактации является критерием отбора животных с высокой пожизненной продуктивностью и длительным сроком хозяйственного использования.

Литература. 1. Анакер, Г. Сколько корова даст за жизнь – важнее! Г. Анакер // Новое сельское хозяйство. – 2007. – №6. – С. 76-81. 2. Бильков, В.А. Резервы интенсификации скотоводства на промышленной основе в хозяйствах Вологодской области / В.А. Бильков, Ю. А. Чурбаков // Сб. науч. тр. / ФГОУ ВПО «БГСХА». – Брянск, 2006. – Выл. 8: Селекционно-генетические и эколого-технологические проблемы повышения долголетнего продуктивного использования молочных коров. – С. 44-55. 3. Бороздин, Э. Пожизненная продуктивность и долголетие коров – дочерей быков чёрно-пёстрой и голштинской пород / Э. Бороздин, М. Емкужев // Молочное и мясное скотоводство. – 2000. – №3. – С. 21.— 4. Кудрин, А.Г. Наследуемость продолжительности использования молочного скота / А.Г. Кудрин, Ю.П. Загороднев, И.А. Кудрин // Сб. науч. тр./ ФГОУ ВПО «БГСХА». – Брянск, 2005. – Вып. 4: Селекционно-генетические и эколого-технологические проблемы повышения долголетнего продуктивного использования молочных коров. — С. 41-43. 5. Лебедько, Е.Я. Селекционная направленность повышения долголетнего продуктивного использования молочных коров в Канаде / Е.Я. Лебедько // Селекционно-технологические аспекты повышения продуктивности сельскохозяйственных животных в современных условиях аграрного производства: материалы Междунар. науч.-произв. конф. / г.Брянск. / ФГОУ ВПО «БГСХА». – Брянск, 2008 – Ч. 5 – Ветеринарная медицина. – С. 26. 6. Лебедько, Е.Я. Научно-производственная направленность повышения долголетнего продуктивного использования молочных коров в Германии / Е.Я. Лебедько // Селекционно-технологические аспекты повышения продуктивности сельскохозяйственных животных в современных условиях аграрного производства / Материалы Международной, научно-производственной конференции / г.Брянск. / ФГОУ ВПО «БГСХА». – Брянск, 2008. – С. 34-35. 7. Майорова, В.А. Показатели продуктивности чёрно-пёстрых коров разных сроков хозяйственного использования / В.А. Майорова // Сб. науч. тр./ ФГОУ ВПО «БГСХА». – Брянск, 2005. – Вып. 7: Селекционно-генетические и эколого-технологические проблемы повышения долголетнего продуктивного использования молочных коров. – С. 33-36. 8. Овчинникова, Л.Ю. Влияние отдельных факторов на продуктивное долголетие коров / Л.Ю. Овчинникова // Зоотехния. – 2007. – №6. – С. 18-20. 9. Рубан, Ю.Д. Продуктивное долголетие коров, селекция животных и технология производства /Ю.Д. Рубан // Сб. науч. тр. / ФГОУ ВПО «БГСХА». – Брянск, 2007. – Вып. 10: Селекционно-генетические и эколого-технологические проблемы повышения долголетнего продуктивного использования молочных коров. - С. 4-6.

Статья подана 26.02.2010 г.

УДК 636.085.52

СРАВНИТЕЛЬНАЯ ОЦЕНКА СИЛОСА ИЗ ПРОСА И КУКУРУЗЫ

Климович Н.М.

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Ганущенко О.Ф.

РУП «Витебский зональный институт сельского хозяйства НАН Беларуси», г. Витебск, Республика Беларусь

Приведены результаты исследований по химическому составу силосов из проса и кукурузы и их продуктивному действию в рационах молодняка крупного рогатого скота.

Results of researches on a chemical compound of silos from millet and corn and to their productive action in diets of young growth of large horned livestock are resulted.

Введение. Ведущее место в сельскохозяйственном производстве Беларуси занимает животноводство. В настоящее время более 60 % выручки сельскохозяйственных организаций формируется в сфере производства и реализации животноводческой продукции, где, в основном, и заложены резервы укрепления экономики предприятий аграрного сектора. Анализ состояния животноводства показывает, что потребности

внутреннего рынка полностью обеспечиваются производимой в республике животноводческой продукцией. Дальнейшее наращивание ее производства должно реализовываться на экспорт. Чтобы занять достойное место на внешнем рынке, продукция должна быть не только высокого качества, но и иметь низкую себестоимость. Однако животноводство существенно зависит от состояния растениеводства: до 60-70 % в общей себестоимости животноводческой продукции занимают корма, стоимость которых можно снизить только за счет рационального использования сельскохозяйственных угодий, обеспечивая животных дешевыми полноценными рационами. Для выполнения этой задачи требуется подбирать культуры с высокими кормовыми достоинствами и низкой себестоимостью [9].

Климатические условия северо-восточной части республики не позволяют достигнуть оптимальной восковой спелости зерна кукурузы для подавляющего большинства возделываемых гибридов. Высокая стоимость завозимых семян кукурузы и ограниченность суммы, эффективных температур заставляет сельскохозяйственного производителя вести поиск альтернативных высокопитательных культур.

Перспективной культурой, обладающей высокими продовольственными и кормовыми достоинствами, позволяющей получать 200 ц с 1 га и более зеленой массы, является просо. Его выращивают для скота, для птицы, так как оно содержит ценные аминокислоты, способствующие росту молодняка. В размолотом виде его используют для приготовления концентрированных кормов для свиней.

Солома проса - прекрасный корм, охотно поедаемый животными, име- ющий более высокую питательность в сравнении с соломой других культур

Определенное значение имеет просо в качестве культуры зеленого конвейера. Наряду с зерном и отходами его переработки на кормовые цели можно использовать просо в виде сена, которое по своему качеству превосходит сено тимофеевки и других злаковых культур. Высокое качество зеленой массы позволяет готовить из него разнообразные корма, превосходящие традиционные культуры по питательной ценности [3].

Просо отличается коротким вегетационным периодом, повышенной длительностью хранения семян, широкой амплитудой сроков сева [7].

В последние годы повысился интерес к данной культуре. Это обусловлено тем, что просо дает хорошие урожаи зерна и зеленой массы при поздних сроках сева, что позволяет использовать эту культуру для пересева погибших от разных стихийных бедствий озимых и яровых, что в последние годы весьма актуально [1].

Кроме того, в силу участившихся засух различной интенсивности, значение проса как кормовой культуры, будет возрастать. В регионах с низкой суммой активных температур кормовое просо, по кормовой ценности и выходу питательных веществ с единицы площади, вполне может превосходить кукурузу и злаковые травы: однолетние и многолетние.

В настоящее время в Республике Беларусь ставится задача увеличения посевов проса. Для выращивания проса в Витебской области нет никаких препятствий как по почвенно-климатическим, так и по технологическим факторам. При возделывании проса применяются те же машины, удобрения и средства защиты, что и на зерновые культуры [1, 6].

Поэтому просо, в 1-ю очередь в условиях северо-восточной части республики, может стать важным резервом роста эффективности производства кормов и увеличении их питательности.

Цель работы – произвести сравнительную оценку питательной ценности силосов из проса и кукурузы, их продуктивного действия и экономической эффективности использования силосованных кормов в рационах молодняка крупного рогатого скота.

Материал и методика исследований. Для решения поставленной цели в условиях учхоза аграрного колледжа УО ВГАВМ Витебского района были заготовлены два вида силоса из зеленой массы проса и кукурузы: в фазе молочно-восковой спелости. Химический состав образцов определяли по схеме общего зоотехнического анализа в лаборатории кафедры кормления с.-х. животных УО ВГАВМ [2,4,5].

Для изучения продуктивного действия силосов были сформированы 2 группы телочек 10-месячного возраста по 12 голов в каждой. Животных в группы подбирали с учетом возраста и живой массы по принципу пар-аналогов [10]. Содержание животных во время проведения опыта — привязное. Условия содержания контрольной и опытной групп были одинаковыми, кормление - двукратное, поение - из автопоилок. Исследования проводились в зимне-стойловый период. Схема научно-хозяйственного опыта представлена в таблице 1.

Таблица 1 – Схема опыта

Группы	Кол-во, голов	Учетный период	Особенности
		опыта, дней	кормления
Контрольная	12	90	ОР+ силос из кукурузы
Опытная	12	90	OP+ силос из проса

Примечание: ОР- концентраты, сено.

Продолжительность учетного периода опыта, как видно из таблицы 1, составила 90 дней, а длительность предварительного периода — 20 дней. Помимо основного рациона, контрольной группе скармливали силос из кукурузы, а опытной группе — силос из проса [11].

В процессе опыта изучалась поедаемость корма путем проведения контрольных взвешиваний заданных кормов и их остатков перед утренней раздачей один раз в десять дней в два смежных дня.

Продуктивность животных определялась на основании проведенных контрольных взвешиваний молодняка крупного рогатого скота в начале и конце опыта.

На основании показателей продуктивности, стоимости израсходованных кормов, затрат без стоимости кормов на производство продукции производили расчет экономической эффективности выращивания телочек с использованием сравниваемых силосов.

Результаты эксперимента и их обсуждение. Комплексная оценка исследуемых силосов по всем качественным показателям (химическим, биохимическим, органолептическим) показала преимущество просяного силоса по сравнению с кукурузным.

Сравнительная оценка биохимических показателей силосов. Проведенные биохимические исследования (табл. 2) показали, что оба образца корма имеют достаточную концентрацию органических кислот, так как получен оптимальный уровень PH (4,0), а масляная кислота отсутствовала. В соотношении кислот превалировала молочная кислота в обоих силосах, но все же в силосе из проса ее удельный вес был выше на 78%.

Таблица 2 – Биохимические показатели исследуемых силосов

Корма	рН	Сумма	Количество кислот, %		Соотношение кислот, %			
		кислот,	молоч	уксус-	масля-	молоч-	уксус-	масля-
		%	ной	ной	ной	ной	ной	ной
Кукурузный силос (контроль)	4,0	2,069	1,494	0,575	-	72	28	-
Просяной силос	4,0	1,946	1,519	0,427	-	78	22	-

Органолептическая оценка показала, что оба силоса имели сохранившуюся структуру, оливковый цвет и запах квашеных овощей.

Особенности химического состава. Результаты зоотехнического анализа сравниваемых силосов из кукурузы и проса представлены в таблице 3.

Таблица 3- Химический состав силосов из кукурузы и проса, г.

Показатели	Силос кукурузный	Силос просяной
Сухое вещество, %	33,06	33,81
В 1 кг абсолютно сухого веще	ества, г:	
Сырой протеин	96,6	103,6
Сырая клетчатка	296	281
Сырой жир	43	52
БЭВ	508,9	513
Зола	55,5	50,4
Кальций	4,64	4,78
Фосфор	1,86	2,7
Сахар	24,9	25,2
Каротин, мг	28,3	41,1

Данные химического состава показали, что силос из проса имел практически по всем изучаемым показателям, преимущество перед силосом из кукурузы. Концентрация в нем сырого протеина, сырого жира, кальция, фосфора была несущественно выше, а содержание каротина - на 47%. Уровень клетчатки в силосе из кукурузы был на 5,3% выше.

Энергетическую питательность определяли по СТБ 1223- 2000 с учетом фактического химического состава. Результаты расчетов отражены в табл. 4.

Таблица 4 – Питательность силосов из проса и кукурузы

	7 71 7				
Показатели	Силос кукурузный	Силос просяной			
Содержи	Содержится в 1 кг натурального корма				
Обменной энергии, МДж	2,88	3,0			
Кормовых единиц, кг	0,26	0,28			
Содержится в 1 кг СВ корма					
Обменной энергии, МДж	8,72	8,91			
Кормовых единиц, кг	0,80	0,82			

Как видно из таблицы 4, энергетическая питательность силоса из проса была несколько выше, чем кукурузного.

Таблица 5 - Рацион кормления животных и структура кормов (по фактически съеденным кормам)

	Группы				
Показатели			II		
	КГ	%	КГ	%	
Сено злаково-бобовое, кг	3	17	3	16	
Силос кукурузный, кг	20	63			
Концентраты, кг	15	20	15	20	
Силос просяной, кг			19	64	
В рационе содержится:					
кормовых единиц	8,25 8,37				
обменной энергии, МДж	90,8		90,2		
сухого вещества, кг	9,6		9,4		
сырого протеина, г	998		1025		
жира, г	325 375		·		

Продолжение таблицы 5

клетчатки, г	2192	2083
кальция, г	62,3	60,4
фосфора, г	25,5	26,2

В состав рациона кормления входило сено злаковое, концентраты, которые были представлены смесью ячменной дерти 99% и премикса (ПКР-2) -1%, а также силос кукурузный - для контрольной группы и силос просяной - для опытной.

Из приведенных в таблице 5 данных видно, что потребление кормов по СВ подопытными животными обеих групп было практически одинаковым, а в физическом весе телки контрольной группы съедали силоса на 1 кг больше, чем их аналоги из опытной группы. Ежедневное потребление сухого вещества рациона телками контрольной группы составило 9,6 кг, а опытной 9,4 кг, при этом концентрация энергии в 1 кг его составила соответственно 0,86 и 0,89 корм. ед., или 9,5 и 9,6 МДж обменной энергии.

Гематологические показатели. Данные биохимического анализа крови животных (табл.6), полученные в ходе проведения опыта, свидетельствуют о том, что подопытный молодняк имел гематологические показатели в пределах физиологической нормы. В то же время исследованиями установлено, что между группами имелись несущественные различия в содержании отдельных элементов. Достоверных различий по содержанию отдельных изучаемых показателей между животными контрольной и опытной групп не установлено.

Таблица 6 - Гематологические показатели подопытных тёлок

Поморотоли	Гру	Группы			
Показатели	I - контрольная	II -опытная			
Эритроциты, 10 ¹² ⊒ л	6,69±0,13	6,74±0,11			
Гемоглобин, г∃ л	91,6±0,36	90,6±1,06			
Щелочной резерв, мг %	510±19,1	530±10,0			
Общий белок, г⊐ л	78,8±1,67	80,3±1,45			
Кальций общий, мМоль⊐ л	2,71±0,08	2,83±0,05			
Фосфор неорганический, мМоль⊒ л	2,14±0,05	2,19±0,03			
Магний, г/л	0,027±0,001	0,029±0,001			
Калий, г/л	0,46±0,01	0,48±0,02			
Натрий, г/л	2,72±0,04	2,74±0,03			
Железо, мг/л	301±12,5	316±13,5			
Цинк, мг/л	2,28±0,05	2,3±0,11			
Медь, мг/л	1,22±0,05	1,22±0,03			
Марганец, мг/л	0,22±0,006	0,23±0,017			
Каротин, мМоль⊒ л	0,004±0,001	0,007±0,002			
Витамин А, мкМоль/л	0,034±0,004	0,036±0,006			

Основным показателем эффективности использования сравниваемых силосов являлся анализ изменения приростов живой массы. Данные, отражающие динамику живой массы подопытных животных в течение учетного периода опыта, представлены в таблице 7.

Таблица 7 – Изменение приростов живой массы телочек за учетный период опыта, в среднем на 1 голову

Группа		
1	II	
191,3	190,7	
269,0	272,1	
77,7	81,4	
863±18	904±24*	
-	+41	
-	+4,8	
	191,3 269,0 77,7	

Примечание: *- Р>0,05

Основным показателем, характеризующим эффективность выращивания животных, является их живая масса и энергия роста, которые напрямую зависят от условий кормления. Как показали исследования, более интенсивный рост живой массы телочек наблюдался за время учетного периода, как видно из таблицы 7, в опытной группе. Среднесуточный прирост в опытной группе телок составил 904 грамма, что на 4,8% выше, чем в контрольной (однако разница не была статистически достоверной).

Экономическая эффективность, полученная при скармливании в составе рациона силосов из проса и кукурузы, рассчитана исходя из сложившейся внутрихозяйственной себестоимости этих кормов и затрат на выращивание молодняка крупного рогатого скота. Из-за разницы стоимости семян на 1 га посева, в пользу проса, практически в 2 раза, и невысокой урожайности кукурузы, полученной в хозяйстве, себестоимость 1 ц силоса из проса в 1,6 раза дешевле силоса из кукурузы и составила 2,5 тыс. рублей.

Проведенные экономические расчеты показали (табл.8), что в опытной группе получен дополнительный прирост живой массы — 3,7 кг, а затраты корма на единицу продукции снизились на 3,6 %. Себестоимость 1

ц корм. ед. рациона в опытной группе составила 10,3 тыс. руб., или на 57,3% ниже, чем в контрольной. Таким образом, использование в рационах молодняка крупного рогатого скота силоса из проса позволило снизить стоимость кормов на 1 кг прироста на 63,2%, а себестоимость 1 кг прироста - на 0,60 тыс. руб. или 19,8%

Таблица 8 – Продуктивность и экономическая эффективность использования силосов из проса

и кукурузы

Показатели	Контрольная	Опытная
Расход кормов за опыт на 1 голову, ц корм. ед.	7,43	7,53
В т.ч. концентратов	1,49	1,49
Общая стоимость израсходованных кормов на 1 голову, тыс. руб.	120,6	77,4
Стоимость суточного рациона, тыс. руб.	1,34	0,86
Себестоимость 1 ц корм. ед., тыс. руб.	16,2	10,3
Стоимость кормов затраченных на 1 кг прироста, тыс. руб.	1,55	0,95
Затраты кормов на 1 кг прироста, корм. ед.	9,59	9,25
Себестоимость 1 кг прироста, тыс. руб.	3,63	3,03
Снижение себестоимости прироста по отношению к 1 группе, тыс. руб.	-	-0,60

Заключение. На основании проведенных исследований по сравнительной оценке силосов из проса и кукурузы можно сделать следующие выводы:

- 1. Данные химического состава показали, что преимущество имел силос из проса. Содержание сырого протеина, сырого жира, каротина, кальция, фосфора оказалось выше в силосе из проса. Аналогичная закономерность установлена также по биохимическим показателям и энергетической ценности сухого вещества.
- 2. В результате использования силоса из проса в рационах молодняка крупного рогатого скота, за учетный период опыта, на 1 голову получен дополнительный прирост живой массы 3,7 кг, а затраты корма на 1 кг прироста в опытной группе снизились на 0,34 ц корм. ед. или 3,6%. Себестоимость 1 ц корм. ед. рациона в опытной группе составила 10,3 тыс. руб., или на 57,3% ниже, чем у контрольных животных. Таким образом, использование силоса из проса в рационах телок позволило снизить стоимость кормов на 1 кг прироста на 63,2%, а себестоимость 1 кг прироста на 19,8%.

Из вышеизложенного следует, что такую культуру как просо целесообразно включить в перечень однолетних кормовых культур, возделываемых в северо-восточной части республики. Необходимо шире использовать зеленую массу и силос из проса в рационах молодняка крупного рогатого скота, уменьшив при этом удельный вес силосованных кормов из кукурузы, тем самым, снижая себестоимость кормов и продукции.

Питература. 1. Анохин, А.Н.Крупяные культуры / А.Н.Анохин, Е.Д. Горина.-Мн.: Ураджай, 1968. — С.3-10. 2. Авраменко, П.С. Производство силосованных кормов / П.С. Авраменко, Л.М. Постовалова - Мн.: Ураджай, 1984.-144 с. 3. Белогурова А.В. Изучение элементов технологии возделывания проса в условиях Среднего Урала: Автореф. дис...канд.с.-х. наук./А.В. Белогурова; Тюмен.Гос. с.-х.акад..- Тюмень, 2001.-20 с. 4. Ганущенко, О.Ф. Зоотехнический анализ кормов / О.Ф. Ганущенко, Т.С. Кузнецова, Л.В. Новикова.- Витебск: УО Витебская государственная академия ветеринарной медицины, 2004.-31 с. 5.Ганущенко, О.Ф. Рекомендации по заготовке травянистых кормов (сенажа, сена, силоса) / О.Ф. Ганущенко, Н.П. Разумовский. — Витебск: УО Витебская государственная академия ветеринарной медицины, 2003.-39 с. 6. Кадыров, М.А. Современные технологии производства растениеводческой продукции в Беларуси/ М.А.Кадыров и др. Сборник научных материалов: Мн. УП ИВЦ Минфина, 2005.- С.35-39. Т.Киреенко, Н.В. Просо – культура больших возможностей / Н.В.Киреенко, Л.Ф. Курч, А.В. Ураков; Комитет по с.-х. и продовольствию Минского облисполкома, РУП «Минская обл. с.-х. станция», Мн.: 2002.- С.3-28. 8.Надточаев, Н.Ф. Нормативы для учета питательности заготавливаемых кормов в хозяйствах Республики Беларусь //Белорусское сельское хозяйство/ Н.Ф. Надточаев, В.Н. Шпапунов, С.В. Абраскова -2009. № 5. — С.18-23. 9.Попков, Н.А. Проблемы интенсификации производства продуктов животноводства в Республике Беларусь / Н.А.Попков, И.П. Шейко// Материалы междунар. науч.-практ. конф., т.43, ч.1.- Жодино, 2008.- С. 3-6. 10. Овсянников А.И. Основы опытного дела в животноводстве / А.И.Овсянников- М.: Колос, 1976. - 304 с. 11.Редько, Н.В. Кормление сельскохозяйственных животных и технология кормов. Практикум / Н.В.Редько, М.В. Шупик, - Мн.: Дизайн ПРО, 2000.- С.151-159.

Статья поступила 24.02.2010 г.

УДК 636.2.084.522.2

РУБЦОВОЕ ПИЩЕВАРЕНИЕ И ПРОДУКТИВНОСТЬ БЫЧКОВ ПРИ РАЗНОМ СООТНОШЕНИИ РАСШЕПЛЯЕМОГО И НЕРАСШЕПЛЯЕМОГО ПРОТЕИНА

Ковалевская Ю.Ю.

РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству», г. Жодино, Республика Беларусь

Рационы с расщепляемостью протеина 60-65% в организме бычков активизируют ферментативные процессы в рубце и позволяют получать среднесуточные приросты 1049-1078 г при затратах кормов 8,2-8,4 корм. ед.

A diet with protein digestibility of 60-65% in organism of calves activates fermentation processes in rumen and allows to obtain average daily weight gains of 1049-1078 g within the feed spends of 8,2-8,4 fd. units.

Введение. По современным представлениям [1, 3, 7, 8] при оценке протеиновой обеспеченности жвачных необходимо знать возможности и количественные параметры микробиального синтеза в преджелудках, а также степень усвоения и использования кормового и микробного белка, содержащихся в них аминокислот при различных физиологических состояниях и уровне продуктивности животных. Кроме