кормовую единицу, что ниже зоотехнической нормы кормления на 22%. Дефицит одного грамма переваримого протеина в кормовой единице влечет перерасход кормов для получения 1 кг молока и мяса в 1,8-2,2 раза, что приводит к увеличению себестоимости продукции. Поэтому при улучшении необходимо стремиться не только к повышению урожайности травостоев, но и к получению высококачественного корма.

В связи с этим целью наших исследований являлось изучить, как приемы перезалужения старосеяных выродившихся луговых травостоев влияют на биохимический состав корма.

Исследования проводились на разнотравно-злаковом травостое восьмого года жизни, состоящего из 75% злаков и 25% разнотравья. Почва экспериментального участка — дерново-подзолистая, среднесуглинистая. Заложенный опыт в 2008 году включал в себя приемы перезалужения на фоне фосфорно-калийного питания ($P_{90}K_{140}$): старовозрастной травостой (контроль), залужение бобово-злаковой травосмесью после обработки дернины и с посевом покровной культуры.

По результатам исследований было установлено, что содержание питательных веществ в 1 кг сена сухого вещества зависело от варианта опыта. Так, наиболее высокое содержание сырого протеина наблюдалось в варианте залужения после обработки дернины — 137,7 г/кг, что на 19,6% больше, чем на старовозрастном травостое.

Клетчатка является важным компонентом в рационе жвачных животных. Она необходима для нормальной функции рубца. Поэтому следует отметить, что содержание клетчатки на данном варианте было на уровне 245,7 г/кг, это в пределах нормы (170-250 г/кг). На варианте залужение бобово-злаковой травосмесью с посевом покровной культуры содержание клетчатки превышало норму на 6,7 грамма, а на старовозрастном травостое и вовсе на 26,5 г/кг сухого вещества.

Таким образом, следует отметить, что перезалужение старосеяных травостоев на основе бобово-злаковых агрофитоценозов влияет существенным образом не только на ботанический состав травостоев, но и на биохимический состав корма, заготавляемого из них.

УДК 19.245.001.18:633.2/4

КУЗЬМИЧ Н.Л., студентка

Научный руководитель КОРОТКЕВИЧ С.В., старший преподаватель

УО «Белорусская государственная сельскохозяйственная академия», г. Горки, Республика Беларусь

СТО́ХАСТИЧЕ́СКИЙ АНАЛИЗ КАК МЕТОД ПРОГНОЗИРОВАНИЯ ПРОИЗВОДСТВА ПРОДУКЦИИ КОРМОВЫХ КУЛЬТУР

В практике экономического анализа и прогнозирования нашел широкое применение стохастический анализ, который позволяет определить тесноту связи между количественными и качественными показателями производства и переработки продукции растениеводства и обосновать отбор тех факторов, которые имеют достаточную степень влияния на результативный признак.

Для стохастического анализа рекомендуется использовать многофакторную корреляционную модель, в которой подобраны факторы, оказывающие наиболее существенное влияние на результативный показатель. Так, для стохастического анализа выхода кормов с 1 га кормовых культур, ц.к.ед (Y) к таким факторам можно отнести: хі - балльная оценка пахотных земель, балл; X2

- балльная оценка с/х земель, балл; хз - удельный вес затрат NPK на 1 га посевной площади, %; Х4 - удельный вес посевов кукурузы на силос в общей посевной площади, %; хѕ - удельный вес посевов однолетних трав на зеленую массу в общей посевной площади, %.

В результате реализации в MS EXCEL алгоритма регрессионного анализа получено следующее уравнение связи:

Y = 4,117 + 1,774x1 + 1,622x2 + 0,237x3 + 0,968x4 - 0,688x5

В данном примере можно дать следующую интерпретацию уравнению: уровень выхода кормов с 1 га кормовых культур повысится на 1,774 ц.к.ед при увеличении качества пашни на 1 балл; на 1,622 ц.к.ед при увеличении качества с/х земель на 1 балл; на 0,237 ц.к.ед в результате увеличения удельного веса затрат NPK на 1 га посевной площади на 1 п.п. и тд. Величина коэффициента множественной корреляции составляет 0,62 и означает, что в 62 случаях из 100 выбранные факторы влияют на значение результативного показателя.

На основании вышеизложенного можно сделать вывод о том, что выявленные в процессе стохастического анализа закономерности и количественные взаимосвязи позволяют осуществлять краткосрочные и среднесрочные прогнозы производства и переработки продукции кормовых культур с применением различных вариантов изменения значений факторов. Таким образом, одним из методов прогнозирования производства и переработки продукции кормовых культур является стохастический анализ.

УДК 633.2/.3:631.8

КУЗНЕЦОВА Н.Ю., студентка

Научный руководитель КОВГАНОВ В.Ф., ассистент

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

СТРУКТУРА ЛУГОВЫХ ТРАВОСТОЕВ ПОСЛЕ ПРИЕМОВ ПОВЕРХНОСТНОГО УЛУЧШЕНИЯ

Урожай многолетних трав слагается из побегов и их органов. В большинстве случаев соотношение побегов и органов бывает разным и зависит от вида растения, его возраста и условий произрастания. Кормовая же ценность зависит в первую очередь от облистевнности побегов. Не секрет, что в кормовом отношении листья являются наиболее ценной частью растений, так как в них содержится в несколько раз больше питательных веществ, чем в стеблях.

Целью исследований являлось установить, как приемы поверхностного улучшения в зависимости от минерального питания влияют на структуру лугового травостоя.

Экспериментальные исследования проводились на разнотравно-злаковом травостое восьмого года жизни, состоящего из 75% злаков и 25% разнотравья. Почва экспериментального участка — дерново-подзолистая, среднесуглинистая. Опыт включал в себя приемы поверхностного улучшения: старовозрастной травостой (контроль); омоложение травостоя путем двукратного дискования; подсев бобовых трав в дернину, а также фон минеральных удобрений: без удобрений, $P_{90}K_{140}$ и $N_{90}P_{90}K_{140}$.

В результате исследований было установлено, что в среднем за четыре года наиболее существенное влияние на количество побегов, массу 100 стеблей и облиственность на всех приемах улучшения оказывало минеральное питание. Так, внесение $N_{90}P_{90}K_{140}$ на старовозрастном травостое способствовало