переносился телятами, не оказывал негативного влияния на исследуемые морфологические, биохимические и иммунологические показатели крови. Анализ исследуемых показателей крови телят указывал на активацию гемопоэза, синтеза белка, повышение естественной резистентности и улучшение метаболических процессов организма телят при применении препарата «Гермакап».

Литература. 1. Авдосьева, I. К. Перспективи використання здобутків нанотехнологій у ветеринарній практиці / І. К. Авдосьєва, В. Г. Каплуненко, А. Г. Пащенко // Тваринництво сьогодні. — 2015. — № 7. — С. 52-56. 2. Клінічні дослідження терапевтичної ефективності препарату Гермакап на телятах/ М. І. Жила, І. К. Авдосьєва, А. Г. Пащенко, Л. В. Калиновська, Г. М. Михалусь // Науковий вісник Львівського національного університету ветеринарної медицини та біотехнологій імені С. 3. Гжицького. – Львів, 2016. – Том 18, № 1 (65), Ч. 1. – С. 41-46. 3. Клінічні дослідження ветеринарних препаратів та кормових добавок / І. Я. Коцюмбас [та ін.] ; за ред. І. Я. Коцюмбаса. — Л. : ТОВ Видавничий дім «САМ», 2013. — 252 с. 4. Лабораторні методи дослідження у біології, тваринництві та ветеринарній медицині : довідник / В. В. Влізло [та ін.]; за ред. В. В. Влізла. — Львів: Сполом, 2012. — 764 с. 5. Лебр, М. Органические соединения германия / М. Лебр, П. Мазероль // Москва : Мир, 2009.— С. 124-136. 6. Саханда, І. В. Препарати Германію та їх застосування в медицині / І. В. Саханда // Український науково-медичний молодіжний журнал. — 2014. — N_2 4 (84). — С. 83-86. 7. Гепатопротекторні властивості нової комплексної сполуки Германію з купрумом (Медгерму) при експериментальному токсичному гепатиті / О. Л. Тимчишин, В. Й. Кресюк, В. В. Годован, А. І. Даниленко // Досягнення біології та медицини. – 2011. - № 2 (18). -C. 64-69. 8. Brzoska, M. M. Interactions between cadmium and zinc in the organism // M. M. Brzoska, J. Moniuszko-Jakoniuk // Food Chem. Toxicol. – 2000. - Vol. 5. - P. 967-980.

УДК 639.331.7

РАСПРОСТРАНЕНИЕ ПОСТОДИПЛОСТОМОЗ У УКЛЕИ В БАССЕЙНЕ РЕКИ ЗАПАДНАЯ ДВИНА

Забудько В.А., Засинец С.В.

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Введение. Постодиплостомоз (чернопятнистая болезнь) — инвазионная болезнь многих видов пресноводных рыб, характеризующаяся поражением кожи, мышц, появлением черных пятен различной величины, на коже, искривлением позвоночника. Возбудителем болезни являются метацеркарии трематоды *Posthodiplostomum cuticola*, которые локализуются в подкожной клетчатке, в мышцах, на плавниках и заключены в цисты размером 0,6–0,9 мм в диаметре. Вокруг цист откладывается пигмент меланин в виде черного пятна.

По литературным данным окончательными хозяевами при постодиплостомозе являются цапли — серая, рыжая, желтая, белая и другие рыбоядные птицы. В Республике Беларусь обитают: цапля белая большая (Egretta alba), цапля белая малая (Egretta garzetta), цапля египетская (Bubulcus ibis), цапля желтая (Ardeola ralloides), цапля рыжая (Ardea purpurea), цапля серая (Ardea cinerea) и кваква (Nycticorax nycticorax), которая так же относится к семейству Цаплевые (Ardeidae).

В Беларуси цапля белая большая распространена повсеместно; в последние годы гнездящаяся популяция составляла 1000 - 2000 гнездящихся пар, а вне сезона размножения – более 10000 птиц. По данным Самусенко И.Э. и др. проведенный ими в 2016 году анализ питания большой белой цапли на территории трех рыбхозов в южной части Беларуси показал, что среди их кормов встречалась рыба длиной от 3 до 19 см и массой от 4 до 170 г. У большой белой цапли в рационе по встречаемости доминировали уклея (40%) и карп (29%). По массе же карп являлся основной добычей и его доля в питании составила 43%, далее по значимости идут уклея (19%), речной окунь (13%) и карась серебряный (11%). Наличие в питании непромысловых видов рыб говорит о том, что птицы кормятся не только на прудах рыбхоза, но также на естественных водоемах. Другие виды цапель менее распространены на территории РБ и их численность меньше. Численность серой цапли в Беларуси оценивается в 4-6,5 тыс. пар, чаще встречается в бассейне р. Припять и в Поозерье. Анализ питания на территории трех рыбхозов в южной части Беларуси показал, что наиболее «удобными» для серой цапли размерами рыб являются 3-11 см. По встречаемости в питании доминировали окунь и карп по 40%, а по массе – окунь (39%), карп (30%) и плотва (23%). Цапли желтая и рыжая, это редкий залетный вид птиц в Беларуси. Кваква относится к редким нерегулярно гнездящимся видам, регистрировалась в Брестской, Гродненской и Минской областях, численностью до 5 пар.

По данным Федоткиной С.Н. (2013), наибольшая экстенсивность постодиплостомозной инвазии этих рыбоядных птиц, обитающих на водоемах Волгоградской области, отмечается у баклана -83,3%, при ИИ -4-5 экземпляров. У серой цапли ЭИ достигает 37,5%, при ИИ -1-3 экземпляра. Зараженность постодиплостомозом плотвы составляет -14,36%, толстолобика -15,42%, густеры -18,18%, чехони -11,94%.

Баклан большой (*Phalacrocorax carbo*) — широко распространенный вид, численность которого в Беларуси — 2,5-3,0 тысячи гнездящихся пар за исключением Могилевской. По завершении сезона размножения размер только белорусской группировки (без учета мигрантов с севера) может составлять 12,8-15,0 тыс. особей, в т. ч. 6,0-7,0 тыс. особей размножающихся птиц и 4,8-5 тыс. вылетевших из гнезд птенцов. По данным Самусенко И.Э. и др. в составе кормов бакланов присутствовала такая рыба, как карп, карась серебряный, амур белый, толстолобик, ерш обыкновенный, окунь речной, щука, плотва, лещ. Размер отдельных экземпляров варьировал от 5,5-6,5 см (окунь, ерш) до 29,7 см (карп) и 27,3 см (толстолобик). По встречаемости в питании большого баклана доминировали ерш (29%) окунь речной (23%) и карп (22%).

Выпь (*Botalurus stellaris*) — немногочисленный гнездящийся, перелетный и единично зимующий вид, регистрируется на всей территории Беларуси. На Полесье — достаточно обычный вид птиц. Численность составляет 950—1200 пар. По данным Шахтахтинской (1953) у большой выпи в Азербайджане был зарегистрирован возбудитель постодиплостомоза.

Материалы и методы исследований. Материалом для проведения исследований служили рыбы семейства карповых, в частности — уклея (*Alburnus alburnus*), обитающая в реке Западная Двина в черте города Витебска. Для постановки диагноза применялся визуальный и микроскопический методы диагностики для определения зараженности рыб метацеркариями постодиплостом. Исследования уклеи проводились в период с 2015 по 2019 год.

Результаты исследований. При обследовании уклеи размером до 8,5 сантиметров экстенсивность инвазии составила 100%. Уклея размерами от 8,5 до 10 сантиметров была заражена на 20%. По литературным данным основными местами паразитирования метацеркариев является кожа, подкожная клетчатка, мышечная ткань. В данном случае при обследовании уклеи до 8,5 см установлено, 90% инвазированной рыбы основным паразитирования местом метацеркариев является хвостовой плавник, при интенсивности инвазии от 1 до 6 метацеркариев. У 40% инвазированной рыбы был поражен спинной плавник, при интенсивности инвазии от 1 до 3 метацекариев. Отмечалось разрушение лучей плавников и межлучевой ткани. Разрушение плавников доходило до 70% от их общей площади вследствии снижения эластичности тканей и их очаговаму некрозу. И только у 10% рыб метацеркарии локализовались на теле, при интенсивности инвазии до 3 метацеркариев.

Заключение. Полученные результаты свидетельствуют, что у уклеи до 8,5 см (возраст 1-2 года) наиболее часто поражается хвостовой плавник, в котором метацеркарии разрушают лучи плавников и межлучевую ткань, в результате этого нарушается двигательная способность рыбы, и она становится легкой добычей для рыбоядных птиц и хищной рыбы; этим объясняется, что уклея размерами более 8,5 см имеет меньшую степень зараженности постодиплостомозом.

Литература. 1. Гричик, В. В. Животный мир Беларуси. Позвоночные: учеб. пособие / В. В. Гричик, Л. Д. Бурко. - Минск, 2013. -399 с. 2. Питание большого баклана, серой и большой белой цапель на территории рыбоводческих хозяйств юга Беларуси / И. Э. Самусенко [и др.] // Актуальные проблемы зоологической науки в Беларуси: сборник статей XI Зоологической Международной научно-практической конференции, приуроченной к десятилетию основания ГНПО «НПЦ НАН Беларуси по биоресурсам». — Минск, 2017. - Т. 1. - С. 361-372. 3. Федоткина, С. Н. Гельминтофауна промысловых рыб в естественных водоемах Волгоградской области: автореф. дис. ... канд. вет. наук: 03.02.11 / С. Н. Федоткина. - Ставрополь, 2013. — 21 с.

УДК 636.2.061:636.082.31

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА РАЗЛИЧНЫХ ТЕХНОЛОГИЧЕСКИХ ПРИЕМОВ ПРИ ВЫРАЩИВАНИИ РЕМОНТНОГО МОЛОДНЯКА

Истранин Ю.В., Истранина Ж.А., Минаков В.Н.

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Введение. Высокопродуктивными могут быть только здоровые, целенаправленно выращенные животные. Ускоренный процесс интенсификации молочного скотоводства представляет повышенные требования к выращиванию животных. Молочный скот должен иметь хорошее телосложение, быть пригодным к машинному доению, регулярно давать приплод, обладать резистентностью к заболеваниям, иметь высокую оплату корма [1, 2].