На 8 день опыта был умеренно выражен воспалительный отек, в грануляционной ткани обнаруживали формирующиеся капилляры, скопление микро- и макрофагов, лимфоцитов, плазматических клеток, фибробластов. Общее количество клеток у животных 2 и 3 группы превышало количество клеток у животных 1 группы в 1,5-2 раза и составляло у собак 2 группы 120 в 10 полях зрения микроскопа (объектив 100, окуляр 5, бинокуляр 1,5), 3 группы 170, а в 1 группе только 80. У животных 2 и 3 групп в составе клеток преобладали макрофаги, лимфоциты, было значительно больше фибробластов.

На 13 день опыта у животных 2 и 3 групп отмечали выраженные признаки созревания грануляционной ткани, в ней уменьшалось количество клеток, вместо капилляров появились артериолы и венулы, формировалось волокнистая рубцовая соединительная ткань. У животных 1 группы этот процесс был несколько замедлен, у них еще отмечался некоторый отек тканей, инфильтрация краев макрофагами, лимфоцитами плазматическими клетками.

На 18 день у собак 2 и 3 групп обнаруживали рубцовую ткань. У животных 1 группы процесс формирования рубцовой ткани был выражен, но еще выявлялись клеточные элементы — макрофаги, лимфоциты и т.д., что указывало на меньшую степень ее созревания. При клиническом исследовании у животных 2 группы отмечалось опережение процессов заживления ран по сравнению с животными 1 группы на 3-4 дня, а у собак 3 группы — на 2-3 дня.

Все это указывает на то, что поляризованный полихроматический свет и НИЛИ оказывают выраженное стимулирующее действие на процессы репаративной регенерации инфицированных ран у собак, а, следовательно, являются эффективными средствами лечения такой патологии.

УДК 619: 616.155.194: 636.4 - 053.2

ИНФРАКРАСНОЕ НИЗКОИНТЕНСИВНОЕ ЛАЗЕРНОЕ ИЗЛУЧЕНИЕ И ПОСТОЯННОЕ МАГНИТНОЕ ПОЛЕ В ЛЕЧЕНИИ БОЛЬНЫХ БРОНХОПНЕВМОНИЕЙ ТЕЛЯТ

КАРПУТЬ И.М., КОЗЛОВСКИЙ А.Н. Витебская государственная академия ветеринарной медицины

С целью изучения влияния низкоинтенсивного инфракрасного лазерного излучения на показатели естественной резистентности у телят при бронхопневмонии, нами были проведены исследования в колхозе «Красная Армия» Витебского района. Больные телята были разделены на две опытные группы и контрольную.

В качестве терапевтических средств, при лечении животных всех групп использовали гентамицин 4% и сульфадимезин. Помимо этого телят первой опытной группы подвергали надвенному воздействию инфракрасным низко интенсивным лазерным излучением (НИЛИ), а телят второй опытной группы - сочетанному воздействию низко интенсивным лазерным излучением и постоянным магнитным полем (ПМП). Источником магнитного поля при этом служила магнитная насадка. Мощность НИЛИ составляла 10 мВт, а время облучения 5 минут ежедневно в течение 10 дней

Материалом для исследований служили кровь и сыворотка крови, полученные от телят. Взятие материала от животных проводили до начала облучения, на 1-й, 3-й, 5-й, 7-й и 10-й дни опыта.

В крови изучали содержание гемоглобина, общее количество эритроцитов и лейкоцитов, выводили лейкограмму. В сыворотке крови определяли содержание общего белка и белковые фракции при помощи реактивов фирмы Cormay и денситометра фирмы Sebia.

В крови больных до начала облучения увеличивалось количество лейкоцитов, преимущественно за счет нейтрофилов. Возрастало содержание гемоглобина и эритроцитов. При исследовании крови на пятые сутки после начала лечения содержание гемоглобина и эритроцитов у телят оставалось повышенным, количество лейкоцитов у животных приближалось к норме, нейтрофильная реакция сменялась моноцитозом и лимфоцитозом. К десятым суткам содержание гемоглобина, эритроцитов и лейкоцитов возвращались к физиологической норме. Среди лейкоцитов возрастало число лимфоцитов и эозинофилов.

Содержание общего белка в сыворотке крови, на протяжении всего курса лечения оставалось без существенных изменений, а при изучении динамики изменений содержания белковых фракций, нами были получены результаты, приведенные в таблице.

Таблица Тинамика изменения солержания белковых фракций в сыворотке ктови

Динамика изменения содержания белковых фракций в сыворотке крови			
Дни исследований Название фрактиц	До облучения, %	На 5-й день об- лучения, %	На 10-й день облучения, %
Инфракрасное излучение надвенно			
Альбумины	36,4+2,58	38,1+4,11	34,7+2,64
α1 -глобулины	5,8+0,37	6,3+0,49	7,6+1,128
а2 -глобулины	9,9±0,08	9,3+0,03*	11,0+0,95
ВІ - глобулины	11,9+0,05	10,5±0,30*	10,0+0,90
В2- глобулины	14,0+1,62	9,2+1,26	9,5+1,76
ү- глобулины	21,6+2,06	26,5±3,72	27,0+4,13
Инфракрасное излучение + магнитное поле надвенио			
Альбумины	48,6 <u>+</u> 2,11	48,2 <u>+</u> 2,06	48,5+1,39
al -глобулины	5,56±0,18	6,2 <u>+</u> 0,03	7,4+0,20**
α2 -глобулины	9,4+0,46	8,9+0,17*	9,6+0,38
В1- глобулины	10,9+0,33	10,4±0,25	8,6+0,40**
В2- глобулины	10,3±0,95	8,3+0,96	6,9+0,81
ү- глобулины	15,0 <u>+</u> 1,63	17,8±1,28	18,8 <u>+</u> 1,30

Примечание: *, **, ***, -уровень значимости критерия достоверности P<0,05, P<0,01, P<0,001-соответственно к показателям первого столбца.

Установлено, что увеличение концентрации γ - глобулинов в сыворотке крови у телят, подвергавшихся надвенному воздействию инфракрасным НИЛИ, составило 22,31% на 5-й день облучения и 24,75% на 10-й день облучения, по сравнению с этим показателем до начала лазеротерапии. В результате сочетанного воздействия НИЛИ и ПМП увеличение концентрации γ - глобулинов в сыворотке крови у телят к 5-му и 10-му дням облучения, по сравнению с этим показателем до начала воздействия, составило 18,34 и 25,23% соответственно. В то же время у контрольных животных этот показатель составлял соответственно 11,35 и 19,45%.

Выздоровление больных бронхопневмонией животных при использовании НИЛИ и при его сочетанном применении происходило на 2-3 дня быстрее.

Заключение. Инфракрасное низкоинтенсивное лазерное излучение оказывает стимулирующее влияние на показатели естественной резистентности. Сроки выздоровления телят, больных бронхопневмонией, сокращаются на 2-3 дня. Более выраженный эффект отмечается при сочетанном использовании инфракрасного НИЛИ и ПМП.

УДК 619:614.9:636.2:619:618.19-002

РОЛЬ ЗООГИГИЕНИЧЕСКИХ ФАКТОРОВ ВНЕШНЕЙ СРЕДЫ В ВОЗНИКНОВЕНИИ МАСТИТОВ У КРУПНОГО РОГАТОГО СКОТА В УЧХОЗЕ «ПОДБЕРЕЗЬЕ»

КОБОЗЕВ В.И., ИВАНОВА Т.П., ЗЕЛЕНКО Е.Н., ИВАНОВА Я.В. Витебская государственная академия ветеринарной медицины

Концентрация животных на современных промышленных комплексах требует большого внимания в поддержании основных зоогигиенических мероприятий по поддержанию микроклимата. Установлено, что нарушение этих условий содержания ведет к уменьшению естественной резистентности, продуктивности и увеличению роста заболеваний, особенно молочной железы, у коров. Так, у 8-10% коров регистрируются клинически выраженные маститы, в скрытой форме у 25-30% (Воскобойников В.М.,1981).

Этиологическими факторами возникновения маститов чаще бывают микроорганизмы, а также грибы, но могут быть маститы под воздействием механических, термических и других факторов неинфекционного происхождения. Маститы могут возникнуть также при усилении