Среди изучаемых показателей молочной продуктивности коров-первотелок более высокая степень изменчивости установлена по количеству молочного жира – 8,3-8,8%.

С целью выявления взаимосвязи между показателями молочной продуктивности коровпервотелок разного происхождения были определены коэффициенты корреляции (таблица 2).

Таблица 2 – Взаимосвязь показателей молочной продуктивности коров-первотелок разных линий

Линия	Коэффициент корреляции, г				
RINHIL	удой-жир	удой-белок	удой-молочный жир		
Рефлекшн Соверинга 198998	0,14	0,16	0,72		
Вис Айдиала 933122	-0,21	-0,19	0,68		
Среднее по первотелкам	-0,10	-0,10	0,70		

Анализ полученных данных свидетельствует, что наиболее высокая взаимосвязь между удоем и жирномолочностью отмечается у коров-первотелок линии Рефлекшн Соверинга 198998 (r=0,14). Коэффициент корреляции между аналогичными показателями сверстниц линии Вис Айдиала 933122 – отрицательный.

Содержание массовой доли белка в молоке коров-первотелок имеет такую же генотипическую изменчивость. Из этого следует, что при одностороннем отборе первотелок только по величине удоя будет снижаться не только жирность, но и белковомолочность молока. У сверстниц представленных линий между удоем и количеством молочного жира установлена положительная корреляционная связь (r=0,68-0,72).

Заключение. Исследованиями установлено, что генеалогическая структура стада коровпервотелок хозяйства представлена двумя линиями — Рефлекшн Соверинга 198998 и Вис Айдиала 933122. Наивысший удой по первой лактации показали коровы-первотелки линии Рефлекшн Соверинга 198998 — 4326 кг (P<0,001) при содержании массовой доли жира в молоке — 3,73%.

У животных линии Рефлекшн Соверинга 198998 был установлен положительный коэффициент корреляции между удоем и жирномолочностью (r=0,14). У сверстниц линии Вис Айдиала 933122 установлена обратная связь между данными признаками (r=-0,21). Аналогичная тенденция отмечалась между удоем и содержанием массовой доли белка в молоке коров-первотелок представленных линий.

Литература. 1. Анализ развития молочного скотоводства в Республике Беларусь [Электронный ресурс] / Режим доступа: http://www.rep.polessu.by. – Дата доступа: 20.10.2019. 2. Беларусь остается одним из ведущих мировых экспертов молочной продукции [Электронный ресурс] / Режим доступа: http://www.produkt.by. – Дата доступа : 15.10.2019. 3. Государственная программа развития аграрного бизнеса в Республике Беларусь на 2016-2020 годы. – Минск : НАН Беларуси, 2016. – 32 с. 4. Молочная продуктивность коров-первотелок в зависимости от генеалогической структуры в СПК «Плещицы» / И. С. Серяков [и др.] // Актуальные проблемы интенсивного развития животноводства : сборник научных трудов / Министерство сельского хозяйства и продовольствия Республики Беларусь, Главное управление образования, науки и кадров, Учреждение образования «Белорусская государственная сельскохозяйственная академия». – Горки : БГСХА, 2016. – Вып. 19, ч. 1. – С. 241-247. 5. Организационно технологические требования при производстве молока на молочных комплексах промышленного типа / И. В. Брыло [и др.]. – Минск, 2014. – 105 с. б. Попков, Н. А. Эффективное животноводство – стратегия аграрной политики Беларуси / Н. А. Попков, И. П. Шейко // Весці Нацыянальнай акадэміі навук Беларусі. Серыя аерарных навук. – 2016. – № 4. – С. 90–99. 7. Сельское хозяйство Республики : статистический сборник / Национальный статистический комитет Республики Беларусь : ред. И. В. Медведева [и др.]. – Минск: Государственный комитет по имуществу Республики Беларусь, 2018. – 232 с. 8. Технология выращивания ремонтных телок [Электронный ресурс] / Режим доступа: http://www.agroxxi.by. – Дата доступа: 14.01.2020. 9. Лебедев, С. Г. Характеристика коров-первотелок белорусской черно-пестрой породы и перспектива их использования в условиях СПК «Ольговское» / С. Г. Лебедев, Л. В. Шульга, Е. А. Былова // Ученые записки учреждения образования Витебская ордена «Знак Почета» государственная академия ветеринарной медицины : научно-практический журнал. - 2015. - Т. 51, вып. 1, ч. 2. - С. 65-68.

Поступила в редакцию 18.03.2020 г.

УДК 636:619 (075.8)

РАЗРАБОТКА ВИТАМИННО-МИНЕРАЛЬНОГО ПРЕМИКСА ДЛЯ ПРОДУКТИВНОГО СТАДА КОРОВ

Медведский В.А., Горовенко М.В., Мазоло Н.В., Гуйван В.В.

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Разработан витаминно-минеральный премикс для коров. Использование премикса в дозе 1% к комбикорму позволило повысить среднесуточный удой на 11,7%, а жирность молока — на 0,1%. Коровы, получавшие изучаемый премикс, имели в молоке более высокое содержание кальция и фосфора, а клеточно-гуморальные факторы защиты у них были выше, чем у животных контрольной группы. **Ключевые слова:** премикс, коровы, кормление, продуктивность, кровь.

DEVELOPMENT OF VITAMIN-MINERAL PREMIX FOR PRODUCTIVE HERD OF COWS

Medvedsky V.A., Gorovenko M.V., Mazolo N.V., Guivan V.V.

Vitebsk State Academy of Veterinary Medicine, Vitebsk, Republic of Belarus

Vitamin-mineral premix for cows is developed. The use of premix at a dose of 1% to the combine made it possible to increase the average daily milk yield by 11,7%, and the fat content of milk – by 0,1%.

Cows receiving the study premix had a higher calcium and phosphorus content in the milk, and the cell-hummoral protection factors in them were higher than those in the control animal group. **Keywords:** premix, cows, feeding, productivity, blood.

Введение. В настоящее время животноводство в стране располагает достаточно высоким генетическим потенциалом: удой на корову в лучших сельскохозяйственных организациях находится на уровне 8–8,5 тыс. кг молока за лактацию, среднесуточный прирост бычков на откорме – 1000–1100 г, что позволяет производить конкурентоспособную продукцию. Следует отметить, что только за последние 4–5 лет за счет использования современных технологий и генетического потенциала удой возрос на 1,0–1,5 тыс. кг молока за лактацию [1].

С экономической точки зрения производство молока является более выгодным по сравнению с другими видами животноводческой продукции. Если затраты кормов на получение 1 тыс. ккал в молоке составляют 1,4 к. ед., то на такое же количество энергии, содержащейся в говядине, надо затратить в 5,4 раза больше кормов, в свинине – в 2,5 и в мясе птицы – в 1,9 раза. Поэтому молочное скотоводство должно быть приоритетной отраслью в республике [2].

Главный сдерживающий фактор интенсификации животноводства — дефицит кормов, их плохое качество, низкая концентрация продуктивной энергии в сухом веществе. До последнего времени делался акцент на поддерживающий корм, а не на продуктивный. Для доведения энергии в 1 кг сухого вещества рациона до 0,75–0,80 к. ед. необходимо пересмотреть приоритеты аграрного сектора, отдав первенство животноводству. Земледелие должно быть сориентировано на производство полноценных кормов, особенно травяных: они — основной «хлеб» для животных, концентраты — «масло».

Следует понять, что без решения этих задач невозможно создать эффективное конкурентоспособное отечественное животноводство. Альтернативы здесь нет. Только при обеспечении животных полноценным рационом – главного фактора эффективности и конкурентоспособности отрасли – можно определить такой полностью зависимый от уровня продуктивности показатель, как численность животных.

Для достижения экономически эффективного производства продукции животноводства необходимо, в первую очередь, обеспечить биологически полноценное кормление животных. Полноценность кормления основывается на прочной кормовой базе и достигается кормлением, сбалансированным по основным питательным и биологически активным веществам.

Особое отношение к оптимизации условий кормления должно быть в стадах, имеющих высокий генетический потенциал продуктивных качеств, для реализации которых требуется научно обоснованная система кормления, ориентированная на учет особенностей обмена веществ высокопродуктивных животных. Такие животные чрезвычайно чувствительны к негативным эффектам дисбаланса, так как они живут на максимальном уровне обмена веществ. Поэтому основная и главная цель сбалансированного кормления – помочь корове произвести такое количество молока, которое генетически в ней заложено [3].

Важная роль в повышении продуктивности и резистентности организма животных отводится биологически активным веществам, в том числе и макро- и микроэлементам [2].

Материалы и методы исследований. В условиях э/б «Тулово» Витебского района проведены опыты.

Объектом исследований были дойные коровы черно-пестрой породы в возрасте 3-5 лактаций в зимний и летний периоды, со среднегодовым удоем 3600 кг молока и живой массой 500-520 кг.

Материалом для исследований служили: клинико-физиологическое состояние, кровь, состав и свойства молока дойных коров, корма, а также разработанный премикс.

Состав разработанного премикса представлен в таблице 1.

Таблица 1 - Состав премикса для нетелей, сухостойных коров и коров с удоем до 5 тыс. кг молока в год

Наименование показателя	Характеристика и значение		
1. Внешний вид, цвет, запах	Однородная смесь от серого до бежевого		
	цвета, без признаков плесени, видимых		
	комочков и включений.		
	Плесневелый, гнилостный, затхлый		
	запах не допускается.		
2. Массовая доля влаги, %, не более	10,0		
3. В 1 кг содержится:			
3.1. витамина А, тыс. МЕ/кг	не < 700,0		
3.2. витамина Е, мг/кг	не < 350,0		
3.3. витамина Д ₃ , тыс. МЕ/кг	не < 50,0		
3.4. витамина С, мг/кг	не < 10000,0		
3.5. кальция, %	не < 2,0		
3.6. фосфора, %	не < 0,7		
3.7. кобальта, мг/кг	не < 50,0		
3.8. селена, мг/кг	не < 1,5		
3.9. магния, мг/кг	не < 17000,0		
3.10. меди, мг/кг	не < 350,0		
3.11. цинка, мг/кг	не < 2000,0		
3.12. железа, мг/кг	не < 450,0		
3.13. марганца, мг/кг	не < 300,0		
3.14. целлюлазы, ед./кг	не < 3000,0		
4. Массовая доля:			
4.1. известняковой (доломитовой) муки, %	не < 10,0		
4.2. отрубей пшеничных, %	до 100,0		

Для решения поставленных задач был проведен научно-хозяйственный опыт, продолжительность которого составила 120 дней. Подготовительный период перед опытом составлял 15 дней. По принципу пар-аналогов при проведении опыта было сформировано по 2 группы коров с учетом породы, породности, возраста, стадии лактации, среднесуточного удоя и живой массы (таблица 2).

Содержание животных было привязное, доение - в молокопровод АДСН. Кормление осуществлялось согласно установленным детализированным нормам. Рацион зимнего периода дойных коров состоял из сенажа злаковых многолетних трав, силоса кукурузного, зерна плющенного, свеклы кормовой, барды свежей, комбикорма КК 60-С. В летний период животные получали траву культурного пастбища и комбикорм КК 60-П. Параметры микроклимата в помещении для коров соответствовали зоогигиеническим нормам.

Перед началом опыта определяли химический состав кормов путем отбора проб и их анализа по методикам П.Т. Лебедева и А.Т. Усович в лаборатории зооанализа кафедры кормления сельскохозяйственных животных УО ВГАВМ.

Таблица 2 – Схема опыта

Taominga Z — Oxcivi	a Olibila			
Группа	Кол-во	Продолжи-	Условия кормления	
	коров	тельность		
	(n)	опыта, дней		
	I опыт (зимний период)			
I контрольная	100	120	ОР (сенаж злаковых многолетних трав, силос кукуруз-	
	ный, зерно плющенное, свекла кормовая, барда свежая			
и комбикорм КК 60-С)				
II опытная	100		ОР + 1 % разработанного премикса к комбикорму	

В научно-хозяйственном опыте изучали следующие показатели:

- 1. Молочную продуктивность коров по среднесуточному удою коров с помощью счетчика надоя УУМ–04.
 - 2. Состав и качество молока оценивали по общепринятым в зоотехнии показателям.
- 3. Состояние естественных защитных сил организма у 5 коров из каждой группы с учетом следующих показателей: фагоцитарная активность лейкоцитов, бактерицидная и лизоцимная активность сыворотки крови.
 - 4. Химический состав кормов по схеме общего зоотехнического анализа.

5. Экономическая эффективность - рассчитывалась на основании стоимости дополнительного надоя молока и стоимости премикса по сравнению с контрольной группой. Определен общий экономический эффект от применения премикса, чистая прибыль в расчете на 1 голову.

Результаты исследований. Животные обеих групп находились в одном помещении и рационы кормления были одинаковыми (кроме изучаемого премикса).

В результате проведенных исследований установлено, что использование премикса оказало положительное влияние на продуктивные показатели опытных коров. Продуктивность коров приведена в таблице 3.

Таблица 3 - Продуктивность коров

Показатели	I контроль	II опыт
Среднесуточный удой, кг	12,5±1,32	13,7±0,90
Жирность молока, %	3,64±0,21	3,97±0,32
В % к контролю, удой	100,0	109,6

За период опыта коровы 2 группы, в рацион которых вводили премикс в дозе 1,0% от сухого вещества, превосходили аналогов I группы по среднесуточному удою на 1,2 кг.

Нами изучены некоторые показатели качества молока (таблица 4).

В начале опыта физико-химические показатели молока были примерно на одном уровне.

Таблица 4 - Физико-химические показатели молока

Группы	Титруемая кислотность, ⁰ Т	Плотность, кг/м ³	Содержание жира, %	Содержание белка, %	COMO, %	Количество соматических клеток, тыс./см ³
			начало опыта			
I (контроль)	16,8±0,41	1028,0±0,20	3,68±0,094	3,17±0,032	8,56±0,067	297,3±25,9
II (опытная)	17,0±0,55	1028,1±0,20	3,70±0,102	3,18±0,024	8,53±0,064	297,4±19,3
	конец опыта					
I (контроль)	18,1±0,42	1028,0±0,20	3,64±0,022	3,18±0,034	8,55±0,067	295,8±11,1
II (опытная)	17,4±0,51	1028,2±0,40	3,3,97±0,084	3,19±0,053	8,57±0,031	267,9±12,6*

Примечания: * - Р<0,05; ** - Р<0,01; *** - Р<0,001.

В конце опыта нами установлено увеличение содержания жира и белка в молоке опытных животных, снижение титруемой кислотности и количества соматических клеток.

Определение содержания минеральных веществ и кетоновых тел в молоке животных показало, что содержание кальция в конце опыта и фосфора было несколько выше у животных, получавших изучаемый премикс (таблица 5).

Таблица 5 - Показатели качества молока

Группы Кальций общий, ммоль/л Фосфор неорганический		Фосфор неорганический, ммоль/л	Кетоновые тела, ммоль/л			
		начало опыта				
I (котроль)	28,43±0,110	20,38±0,110	1,22±0,012			
II (опыная)	28,53±0,293	20,22±0,136	1,26±0,028			
	конец опыта					
I (котроль)	28,45±0,090	20,25±0,094	1,24±0,025			
II (опыная)	28,85±0,198	20,41±0,139	1,15±0,041			

К факторам гуморальной устойчивости относятся бактерицидная активность сыворотки крови, лизоцимная активность сыворотки крови, титр агглютининов. К клеточным факторам устойчивости относится фагоцитарная активность сыворотки крови, в том числе фагоцитарное число и фагоцитарный индекс.

В результате анализа полученных данных выявлено, что использование в рационах коров разработанного премикса оказало положительное влияние на состояние естественных защитных силорганизма коров.

Лизоцимная активность сыворотки крови (ЛАСК) коров, получавших премикс, в конце опыта возросла во 2 группе на 0,5% (P<0,05) по сравнению с контролем. Бактерицидная активность сыворотки крови (БАСК) у коров 2 группы была на 4,0% (P<0,05) выше, чем у аналогов I контрольной группы.

Установлено, что клеточные факторы защиты организма коров были также выше у коров получавших разработанный премикс.

Морфологические показатели крови у коров представлены в таблице 6.

Таблица 6 – Гематологические показатели коров

Группы	Группы Эритроциты, Тр 10 ¹² /л		Гемоглобин, г/л	Гематокрит, %
·	вн	ачале опыта		
I (контроль)	5,76±0,38	372,4±12,51	82,2±3,90	27,40±1,12
II (опытная)	5,61±0,50	397,0±31,76	81,8±3,48	24,60±1,07
	ВІ	онце опыта		
I (контроль)	5,79±0,39	385,1±12,01	82,6±4,68	26,90±1,71
II (опытная)	5,93±0,49	400,6±13,62	82,4±6,07	27,10±1,84

Введение премикса позволило повысить содержание эритроцитов, тромбоцитов и гематокрит у животных опытной группы. По содержанию гемоглобина существенных различий не отмечено.

Установлено, что применение премикса позволило повысить содержание общего белка и глюкозы в крови коров опытной группы. По содержанию альбуминов, мочевины и холестерола значительных различий не отмечено (таблица 7).

Таблица 7 - Биохимические показатели крови коров

Гоуппи	Общий	Альбумины,	Мочевина,	Холестерол,	Гпокоза ммопі /п	
Группы белок, г/л г/л		ммоль/ л ммоль/л		Глюкоза, ммоль/л		
		В	начале опыта			
I (контроль)	72,1±1,82	37,5±1,48	2,8±0,26	5,25±0,456	2,65±0,121	
II (опытная)	72,6±1,06	33,4±0,66	2,9±0,25	5,27±0,523	2,68±0,187	
	в конце опыта					
I (контроль)	74,2±1,32	38,4±1,06	2,5±0,41	5,16±0,214	2,77±0,154	
II (опытная)	78,7±1,71	37,8±1,40	2,4±0,45	4,94±0,165	2,97±0,313	

Содержащиеся в премиксе минеральные вещества с кормом переходили в желудочно-кишечный тракт и далее всасывались в тонком отделе кишечника (таблица 8).

Таблица 8 - Минеральный состав крови коров

wormida o immioharizmi occiaz akozni kokoz						
Группы	Кальций,	Фосфор,	Цинк,	Марганец,	Кобальт,	Медь,
труппы	ммоль/л	ммоль/л	мкмоль/л	мкмоль/л	нмоль/л	мкмоль/л
			в начале опы	га		
I (контроль)	1,82±0,07	1,56±0,19	49,20±0,80	3,12±0,11	469±8,25	12,32±0,21
II (опытная)	1,87±0,07	1,55±0,18	48,91±2,35	3,15±0,11	476±6,63	12,28±0,34
	в конце опыта					
I (контроль)	1,89±0,04	1,57±0,05	51,96±1,65	3,11±0,21	478±8,12	12,59±0,22
II (опытная)	2,14±0,06	1,69±0,08	52,62±1,28	3,20±0,16	503±9,65	12,93±0,39

В конце опыта отмечено увеличение кальция, фосфора, цинка, марганца, кобальта и меди у животных, получавших разработанный премикс.

По результатам научно-хозяйственного опыта рассчитана экономическая эффективность использования премикса в рационах дойных коров.

Получено дополнительно от 1-й коровы 366 литров молока за период лактации. Ориентировочная стоимость премикса - 7 руб. за кг.

Расчет экономической эффективности показал, что использование премикса на протяжении 305 дней позволяет получить дополнительной прибыли 146 руб. в расчете на 1 корову.

Заключение. Разработанный премикс позволяет улучшить обменные процессы в организме нетелей и сухостойных коров, повысить неспецифические факторы резистентности их организма, а для коров продуктивностью до 5 тыс. кг молока за лактацию способствует повышению молочной продуктивности на 1,5 кг в сутки. Доза введения премикса - 1,0% к комбикорму.

Введение в рацион коров премикса позволяет повысить жирность молока на 0,33%, улучшить качество молока.

Экономическая эффективность применения разработанного премикса в кормлении дойных коров в дозе 1,0% к комбикорму составляет 146 руб. на 1 голову за 305 дней лактации.

Литература. 1. Производство экологически безопасной животноводческой продукции при использовании энтеросорбентов / М. А. Веротченко [и др.] // Зоотехния. — 2009. — № 9. — С. 29—30. 2. Кожевников, С. В. Влияние бентонита в комплексе с пробиотиком на баланс азота и минеральных веществ в организме цыплят-бройлеров / С. В. Кожевников // Кормление сельскохозяйственных животных и кормопроизводство. — 2012. — № 3. — С. 45—47. 3. Медведский, В. А. Сельскохозяйственная экология : учебник / В. А. Медведский, Т. В. Медведская. — Минск, 2010. — 416 с.

Поступила в редакцию 25.02.2020 г.