чаются такие сплетения в большинстве своём в грудной доле железы. Плотность сосудисто-капилларной сети в них в 1 мм3 составляет 489-518 мм.

Интраорганные сосуды тимуса характеризуются значительным ростом диаметра всех компонентов сосудистого русла и увеличением плотности сосудисто-капиллярной сеги, особенно в корковом веществе органа, что обеспечивает высокую активность его клеточных популяций.

УДК 619:616.33 - 008.3:636.2 - 053.2:612.017.1

Иммуноглобулиновый статус телят больных диспесией

Л.Н.Букас, Витебская государственная академия ветеринарной медицины

Выживаемость и здоровье коворожденных животных в значительной степени определяется формированием колострального иммунитета в первые дни и даже часы жизни.

Нымуноглобулиновый статус новорожденных определяется не только интенсивностью поступления антител с молозивом, но и уровнем абсородии в тонком кишечнике, содержанием иммуноглобулинов в сыворотке крови, степенью выведения их через желудочно-кишечный гракт и почки.

Целью настоящего исследования было изучение иммуноглобулинового статуса новорожденных телят в норме и при диспепсии. Исследования проводням в совхозе "Витебский" Витебского района. Объектом изучения служили 20 коров черно-пестрой породы и телята, нолученные от этих коров. Животные были поделены на две группы по 10 голов в каждой. В первую группу вошин здоровые телята и их коровы-матери, во вторую телята больные диспепсней и их коровы-матери. Были исключены болезни молодияка вирусной этиологии, колибактерноз, анаэробная энтеротоксемия и диплококиоз. Скрытые маститы исключали бромтимоловой пробой. Молозиво телятам выпанвали из сосковой поилки 4 раза в день по 1,5 литра. Материалом для исследования спужило молозиво коров через 12 часов после отела, кровь, кал и моча телят на первые вторые, патые и десатые сутки жизни. Молозиво выданвали вручную, кровь брали из яремной вены, кал из прямой кишки, мочу-при естественном моченспускании. Сыворотку молозива и сыворотку крови получали общепринятыми методами. Копрофильтраты готовили с использованием физиологического раствора.

В сыворотке молозива коров, сыворотке крови, моче и копрофильтратах телят определяли иммуноглобулины классов G, M, A по Манчини с использованием моноспецифических антисывороток.

Результаты исследований приведены в таблицах 1 и 2.

Таблица

Содержание иммуноглобудинов в молозиве коров - матерей

Показатели	Коровы, телята от которых не болели дислепсией	Коровы, телята от которых болели диспепсией	P	
Ig G.r/л	57.1±2.2	44 2±2,1	< 0,001	
Ig M.r/n	8,2±0,2	7.0±0,42	< 0,001	
Ig A,т/л	5,7±0,16	5,1±0,13	< 0,01	

Из таблицы 1 видно, что содержание иммуноглобулинов в молозиве корев первой группы было выше, чем во второй: Ig G - на 29,2%, Ig M - на 17,7% и Ig A -на 11,8% Вследствие этого телята первой группы в течение первых двух дней получали иммуноглобулинов на 26,1% больше, чем второй и содержание иммуноглобулинов у них в крови на протяжении всего опыта было выше.

В то же время у телят больных диспепсией с мочой и калом выделяпось иммуноглобулинов больше, ем у здоровых. Так, содержание иммуноглобулинов в первые 10 дней жизни в моче больных телят было в среднем на 42,2% выше, чем у здоровых. С содержимым кишечника у больных телят также выделялось больше иммуноглобулинов, чем у здоровых. Среднее содержание иммуноглобулинов в кале за 10 дней у больных телят было на 57,9 % выше, чем у здоровых.

Полученные результаты позволяют судить о механизме становления колострального иммунитета у здоровых и больных диспепсией телят. У телят больных диспепсией происходит худшее усвоение иммуноглобулинов, что приводит к снижению напряженности молозивного иммунитета.

Таблица 2
Содержание иммуноглобулинов в сыворотке крови, моче и кале
здоровых и больных телят

Показатели	Группа	3*	CVIKH			
1						
		Первые	Вторы	е Пятые	Десятые	
		1	В сыворот	ке крови		
lg G,r a	I	8,22±0,24	9.05±0,2	9.07±0,28	10.26±0,29	
	II	6,24±0.3	$6,7\pm0,33$	6.17±0.29	$6,66\pm0.28$	<0.001

I	2,13±0,06	2,42±0,07	2,56±0,07	2,62±0,1			
H	1,1=0.08	1,31±0,07	$1,59 \pm 0.07$	1,34±0,04	<0,001		
I	3,12±0.08	3.21 ± 0.08	2.97±0.07	3.14 ± 0.08			
II	2.71±0.09	2,73±0,06	2,48±0,08	2.34 ± 0.08	<0,001		
В моче							
I	0,23±0,01	0,26±0,01	0,27±0,02	0,31±0,01			
II	0.30 ± 0.01	0.42±0.02	0,49±0.01	0.40=0,01	< 0.001		
I	0.03±0.002	0.03±0.002	0.04±0.002	0.04 ± 0.002	-		
II	0.04±0 003	0.04±0.002	0.05±0.002	0.05 ± 0.002	< 0.001		
I	0.02±0.002	0.02±0.001	0.03±0.001	0,03±0,001			
II	0.03 ± 0.001	0.04 ± 0.002	0,05=0,001	0,04±0,002	< 0,001		
В кале							
I	6,63±0.55	7.46±0.58	8.97±0,86	9,94±0,64			
II	8.2±0.77	14.53±0.87	16,8±0,52	12.95±0,8	< 0,001		
I	1,87±0,3	2,43±0.27	2.8±0,27	2,97±0,34			
II	3,05±0,13	3,75±0.24	5,01±0,24	4,62±0,16	< 0,001		
I	1.63±0.16	0.95±0.14	1.76±0,25	2,12±0,19			
H	1.21±0.11	2,57±0,18	3,58±0,23	1.95±0,11	< 0.01		
	II	II 1,1±0,08 I 3,12±0,08 II 2,71±0,09 I 0,23±0,01 II 0,30±0,01 I 0,03±0,002 II 0,04±0 003 I 0,02±0,002 II 0,03±0,001 I 6,63±0,55 II 8,2±0,77 I 1,87±0,3 II 3,05±0,13 I 1,63±0,16	II	II	II		

*) I - здоровые телята. II - телята больные диспепсией

УДК 502.74:591.5

Влияние загрязнения водоема сточными водами свинофермы на структуру популяций ракообразных

Д.Н.Ганецкий, Витебская государственная академия ветеринарной медицины

В загрязнении водоемов сточными водами существенную роль имеют свиноводческие фермы. Их стоки содержат большое количество биогенных веществ, которые попадая в водоемы, изменяют физико-химические показатели воды как среды обитания растений и животных. Из ракообразных наиболее распространенными видами в водоемах Беларуси являются водяные ослики (Asellus aquaticus) и озерные бокоплавы (Gammatus lacustris). В связи с этим, данные виды могут служить удобными объектами для мониторинга озер в условнях загрязнения их сточными водами свиноферм.

Цель наших исследований заключалась в изучении влияния загрязнения озера Вымно Витебского района сточными водами свинофермы на структуру популящий водяных осликов и озерных бокоплавов