В. М. ХОЛОД

О ВЛИЯНИИ МОЛИБДЕНА НА УГЛЕВОДНЫЙ И ЛИПИДНЫЙ ОБМЕН В ОРГАНИЗМЕ ОВЕЦ

Молибден относится к сравнительно мало изученным микроэлементам. Однако в последнее время утвердилось представление о молибдене, как истинном биоэлементе для животных организмов. Вначале обратили внимание на токсическую роль молибдена. Так, W. S Ferguson и др. (1940) установили, что специфическое заболевание крупного рогатого скота, наблюдающееся в некоторых районах Англии, вызывается высоким содержанием молибдена в пастбищной растительности.

Ряд авторов (В. В. Ковальский, 1960; Ундервуд, 1961; Р. J. Barden, А. Robertson, 1962) указывают на возможность применения молибдена в качестве противоядия при отравлении медью. В последние годы выяснена и физиологическая роль молибдена в организме животных. Установлено, что молибден является компонентом ряда ферментных систем. В тканях животных обнаружили два молибденсодержащих фермента — ксантиноксидазу и альдегидоксидазу (А. Насон, 1962).

Е. М. Малеванная (1959) в опытах на белых крысах и морских свинках и Г. М. Каприелов (1957) в опытах *in vitro* установили, что молибден в соответствующих дозах стимулирует фагоцитарную активность лейкоцитов. Имеется ряд данных, свидетельствующих о влиянии молибдена на обмен аскорбиновой кислоты. Однако еще очень мало известно о влиянии молибдена на обмен веществ как в физиологических концентрациях, так и при высоком содержании его в рационе.

Большинство исследований о влиянии молибдена на организм проводилось на лабораторных животных, поэтому большой интерес представляло выяснить влияние его на обмен веществ и общее состояние овец в условиях длительного скармливания им солей молиблена.

Для опыта подобрали 8 валухов в возрасте 6—7 месяцев. Овцы получали рацион, состоящий из 1,5 кг хорошего лугового сена и 300 г концентратов. Животных разбили на 2 группы: контрольную и опытную, по 4 головы в каждой. В крови исследовали содержание сахара (по Хагедорн-Иенсену), гликогена

(по методу Симановича в модификации Генкина), пировиноградной кислоты (методом Фридмена и Хауджена), активность амилазы (по методу Энгельгардта и Герчука), гликолитическую активность (по методу Гиммерих и Черняк), нейтральный жир (методом Банга), липоидный фосфор (по методу Блюра), холестерин (по методу Лапина) и липолитическую активность сыворотки (методом Напгіот).

Кровь брали из яремной вены в одно и то же время после 12—16-часового голодания. В течение подготовительного периода (49 дней) провели 7—10 исследований каждого показателя углеводного и жирового обмена с целью установления исходных данных по каждому компоненту. В опытный период испытывали молибден в дозах: 0,25 мг на 1 кг веса (48 дней), 1 мг на 1 кг веса (42 дня) и 3 мг на 1 кг веса (37 дней) и определяли те же показатели, что и в подготовительный период (5—7 исследований на каждую дозу). Один раз в две недели овец взвешивали. Одновременно наблюдали за общим

Таблица 1 Влияние молибдена на некоторые компоненты углеводного обмена у овец

	Caxap	В М2%		овино- ая кис- в мг%	Глик в м		Амил	a 3a*	Гликс)лиз**
Показатели	Контрольная	Опытная	Контрольная	Опытная	Контрольная	Опытная	Коятро фияя	Опытная	Контрольная	Опытная
	группа	группа	группа	группа	группа	группа	группа	группа	группа	группа

Подготовительный период

Среднее 3	$\frac{39}{100}$	$\begin{vmatrix} 1,18\\100 \end{vmatrix}$	1,49 100	17,32 100	18,23 100	267 100	272 100	11,76 100	9,43 100
-----------	------------------	---	-------------	--------------	--------------	------------	------------	--------------	-------------

Опытный период

Доза Мо					1					
0,25 мг/кг		00	1 00	1 07	14.00	15 00	0)15	105	11,06	14,74
Среднее	36	39	1,38		14,29					
%	100	100	117	92	82	87	80	38	94	156
Доза Мо									ļ	
1 мг/кг										
Среднее	43	42	1,44	1,16	14,89	16,06	177	304	11,1	6,99
%	119	108	122	78	85	88	66	111	94	74
Доза Мо										
3 мг/кг										
Среднее	39	40	1,33	1,09	15,4	16,45	319	1515	13,96	11,7
00	108	103	112	73	89	90	120	557	119	124

^{*} Активность амилазы выражена количеством сахара в миллиграммах, образовавшегося из крахмала в течение двух часов при пересчете на 100 мл крови, при температуре 37°C.

** Гликолитическая активность выражена количеством сахара (мг), раз-

ложенного в 100 мл крови за 40 минут при температуре 40°C.

состоянием животных. Молибден задавали ежедневно в виде молибденовокислого натрия каждому животному в зависимости от его веса. С целью контроля усвоения его было проведено исследование наличия молибдена у 2 контрольных и 2 опытных животных в среднесуточной пробе мочи и кала. В кормах также исследовали содержание молибдена и меди. В суточном рационе овцы было 1,84 мг молибдена и 6,85 мг меди.

В табл. 1 представлены средние цифры, показывающие изменение отдельных компонентов углеводного обмена в крови контрольных и опытных животных.

Сравнивая изменения углеводного обмена у животных контрольной и опытной групп, можно отметить, что малые дозы молибдена (0,25 мг на 1 кг веса) вызывают угнетение амилоли-

Таблица 2 Влияние молибдена в разных дозах на некоторые показатели липидного обмена у овец

	Нейт ный в м	граль- жир гг%	фо	идный 2фор 12%	Холес общий	терин в <i>мг</i> %	Холес свобол в и	цный	Дипа	a3a*
Показатели	Контрольная группа	Опытн я группа	Контрольная пруппа	Опыткая	Контрольная группа	Опытлая	Контрольная группа	Опытная группы	Контрольная группа	Опытная

						,			
Cpeaner 28	36 286 00 100	9,76 100	10,23 100	95 100	98 100	68 100	65 100	1,69 100	$\begin{bmatrix} 1,74\\100 \end{bmatrix}$

Опытный период

Доза Мо	1						!		1	
0.25 Me/ke										
Среднее	336	321	10,05	9,69	100	100	78	79	1,9	1,7
%	117	113	103	94	105	102	118	121	112	98
Доза Мо										
1 мг/кг						_				
Среднее	339	322	10,05		100	106	81	81	1,81	1,69
%	118	113	103	92	105	108	121	123	108	97
Доза Мо							ļ			
3 мг/кг							1			
Среднее	290	276	90	9,08	101	104	84	89	1,55	1,57
%	101	97	j 92	88	106	106	127	135	192	84

^{*} Активность липазы сыворотки выражена в миллилитрах 1/100 N щелочи, пошедшей на титрование масляной кислоты, образовавшейся из трибутирина за 1 час при температуре 40° C под действием 1 мл сыворотки.

тической активности крови. Средние и большие дозы молибдена (1 и 3 мг на 1 кг веса) увеличивают активность амилазы. Резкое повышение амилолитической активности крови наблюдали у опытных овец при скармливании им 3 мг молибдена на 1 кг

веса. Оно достигало 557% по сравнению с исходными данными.

Выраженное влияние оказывает молибден и на содержание пировиноградной кислоты. У контрольных овец за опытный период содержание ее увеличивалось на 12-22%, а у животных опытной группы под действием всех трех доз молибдена содержание этой кислоты снизилось до 92-73%.

У животных опытной группы так же, как и у контрольных, наблюдали некоторое повышение содержания сахара в крови. Гликолитическая активность крови колеблется весьма значительно. Установить какое-либо определенное влияние молибдена на эту активность нам не удалось. Правда, в первый опытный период (доза 0,25 мг на 1 кг веса) разница в гликолитической активности крови у животных контрольной и опытной группы достигала 60%, но индивидуальные колебания ее у отдельных животных ставят этот эффект под сомнение.

В табл. 2 представлены данные о влиянии молибдена на некоторые показатели липидного обмена.

Молибден в испытанных дозах не оказывает влияния на количество нейтрального жира в крови. Повышение его у животных контрольной и опытной групп связано, очевидно, с понижением температуры воздуха в зимнее время. Аналогичные данные получены М. М. Кичиной (1961).

Как видно из табл. 2, молибден в дозах 0,25 и 1 мг на 1 кг веса снижает содержание липоидного фосфора крови соответственно до 94 и 92%. В третий опытный период уменьшение его наблюдается как в контрольной, так и в опытной группе животных соответственно до 92 и 88%.

Показатели общего холестерина в крови животных обеих групп примерно одинаковы. Свободный холестерин нарастает более резко, чем общий, что свидетельствует о некотором ухудшении процессов этерификации холестерина в печени. Причем увеличение свободного холестерина в крови животных опытной группы несколько превышает содержание его у контрольных. Липолитическая активность сыворотки крови у животных опыт-

Таблица 3 Содержание молибдена в крови овец в $\gamma \%$

Контрольные овцы	Опытные овцы
3,3 4,8 4,9 20,4	102 114 82 92
В среднем 8,3	98

ной группы несколько снизилась, а у животных контрольной группы, наоборот, наблюдалось некоторое ее увеличение.

В табл. З представлены данные о содержании молибдена в крови контрольных и опытных животных в конце опыта. Как видно из таблицы, количество молибдена в крови опытных животных резко возрастает и превышает его содержание у контрольных более чем в 10 раз.

Резко возрастает и выделение молибдена из организма с мочой и калом (табл. 4). Это свидетельствует о том, что молибден, который получали овцы в качестве подкормки, в кишечнике всасывается нормально.

Таблица 4 Среднесуточное выделение молибдена у овец в мг

Контрольные	Опытные овцы			
С калом	С мочой	С калом	С мочой	
0,984 0,619	0,092 0,567	36,55 46,8	13, 14 16, 5	
В среднем 0,8	0,33	41,67	14,82	

Длительное скармливание молибдена в дозах 0,25—3 мг/кг не оказывало влияния на привесы животных опытной группы. Так, привес контрольных животных за весь подопытный период составил 9,8, опытных — 9,3 кг в среднем на голову. Видимых клинических изменений у животных также не наблюдали.

Выводы

- 1. Подкормка молибденом овец в дозе 0,25 *мг* на 1 *кг* веса вызывает снижение, а в дозе 3 *мг* на 1 *кг* веса резкое увеличение активности амилазы крови.
- 2. Подкормка молибденом овец в дозах 0,25, 1 и 3 *мг* на 1 *кг* веса вызывает снижение содержания пировиноградной кислоты в крови.
- 3. Молибден в дозах 0,25 и 1 мг на 1 кг веса животных несколько снижает содержание липоидного фосфора в крови.
- 4. Молибден в дозах 0,25—3 мг/кг не влияет на содержание сахара, гликогена, нейтрального жира, общего и свободного холестерина в крови и липолитическую активность сыворотки. Высокое содержание молибдена в рационе животных приводит к накоплению его в организме и усиленному выделению с мочой и калом.