массы тела 1 раз в сутки в течение 10 дней перед отелом позволило снизить заболеваемость репродуктивных органов у коров на 55,3% и сократить на 75 дней срок бесплодия по сравнению с контрольными животными.

Литература. 1. Еремин, С. П. Повышение эффективности ведения скотоводства [Текст] / С. П. Еремин, П. И. Блохин, Г. Д. Комарова, О. В. Руденко // Ветеринарная медицина. -2012.-№ 1.- С. 12-13. 2. Шабунин, С. В. Болезни органов размножения у животных как локальное проявление полиорганной патологии [Текст] / С. В. Шабунин, А. Г. Нежданов // Современные проблемы ветеринарного обеспечения репродуктивного здоровья животных» : Матер. междунар. научн.-практ. конф., посвящ. 100-летию В. А. Акатова 27-29 мая 2009 года. — Воронеж, 27 - 29 мая 2009. — С. 6 - 9.

УДК 579.864

ВЫЯВЛЕНИЕ ГЕНЕТИЧЕСКОГО МАТЕРИАЛА ИЗ КУЛЬТУРЫ ЛЕПТОСПИР

Ермагамбетова С.Е., Бияшев К.Б., Бияшев Б.К., Киркимбаева Ж.С., Сарыбаева Д.А.

HAO «Казахский национальный аграрный университет», г. Алматы, Республика Казахстан

Введение. Создание стабильного благополучия территории Республики Казахстан по инфекционным болезням и обеспечение биологической безопасности является важной задачей для улучшения социально-экономической обстановки и укрепления национальной безопасности.

Успешная борьба с любым инфекционным заболеванием возможна при правильно разработанном комплексе мероприятий, включающем в себя своевременную и эффективную диагностику, специфическую профилактику и разработку мер по оздоровлению хозяйств от различных заболеваний, в том числе от лептоспироза. Лептоспироз является инфекционным заболеванием многих видов животных, птиц и человека. Наши исследования свидетельствуют, что в последние годы лептоспироз протекает в бессимптомной форме, а переболевшие животные надолго остаются лептоспироносителями. Клиническая форма болезни с симптомами иктерогемоглобинурии, или аборт, проявляется у небольшой группы животных. Тогда как инфицированные животные, имеющие антитела, но без клинического проявления болезни, являются основным источником возбудителя инфекции для здоровых животных и человека. Возникновение заболевания людей лептоспирозом связано с наличием эпизоотических очагов лептоспироза у животных.

В нашей республике производственный выпуск диагностических препаратов и тест-систем не налажен, на практике единственно узаконенной остается реакция микроагглютинации и лизиса, недостатком которого является то, что для проведения тестов требуется наличие большого количества набора живых возбудителей лептоспироза, которые нуждаются в постоянной поддержке (пересевы через каждые 7 дней), что небезопасно для лабораторных работников. исследований требует Кроме того, проведение больших трудозатрат, обусловленных необходимостью при первичной диагностике лептоспироза постановки серологических реакций с каждым штаммом.

Более перспективным в этом направлении представляется метод полимеразной цепной реакции (ПЦР), основанный на амплификации in vitro специфических последовательностей ДНК и отличающийся высокой чувствительностью и специфичностью. Преимуществом этого метода является также возможность диагностики заболевания на ранних стадиях развития, в инкубационном периоде и при течении в скрытой, нетипичной форме.

Разработка тест-системы, позволяющей выявлять ДНК всех патогенных лептоспир вида L.interrogans, будет основанием для проведения испытаний не только в клинической, но и в ветеринарной практике, в том числе для прижизненного контроля животных на лептоспироносительство и для индикации лептоспир в продуктах животного происхождения.

Целью и задачей исследования явилась разработка тест-системы, позволяющей выявлять ДНК всех патогенных лептоспир вида L.interrogans.

Материалы и методы исследований. Объектом исследования явились 8 штаммов лептоспир (*L. pomona*, *L. tarassovi*, *L. grippotyphosa*, *L. hebdomonas*, *L. serjoe*, *L. canicola*, *L. icterohaemorrhagiae*, *L. australis*), используемых для идентификации возбудителей инфекционных болезней на основе выявления их генетического материала в пробах. Штаммы депонированы в Коллекции микроорганизмов Республиканского государственного предприятия «Научно-исследовательский институт проблем биологической безопасности» Комитета науки Министерства образования и науки Республики Казахстан (РГП КН МО и Н РК).

Морфологические свойства лептоспир изучались путем микроскопирования препаратов «раздавленная капля» в темном поле микроскопа. Для этого нами использованы современные микроскопы Levenchuk МТ 42002 с темнопольным фильтром для конденсора, Levenchuk Д870Т, микроскоп LEICA DM 4000 В.

В качестве биологической модели для очистки культур лептоспир использовались морские свинки, которым внутрибрюшинно вводили контаминирующую культуру. Затем кровь из сердца зараженных животных засевали на жидкие питательные среды.

Результаты и обсуждение. При диагностике лептоспироза животных методом ПЦР основным рабочим материалом является ДНК бактерий [5, 2]. Основным критерием в методах выделения ДНК является высокая степень очистки нуклеиновой кислоты от примесей клеточных ДНК и белков. Выделенная геномная ДНК должна быть нефрагментированной, так как она служит матрицей для синтеза специфического продукта [1, 3]. Поэтому нами проведены исследования по отработке оптимальных методов экстрагирования бактериальной ДНК.

Процедура выделения ДНК из клеток и тканей часто является исходным (основным) этапом в исследовании живого организма на молекулярном уровне. От ДНК напрямую или через белки-ферменты зависят все биосинтезы и катаболизм клетки. Клетку необходимо разрушить тем или иным способом, а хромосомную ДНК очистить от других клеточных компонентов. Прежде всего, нужно отделить ДНК от белков, входящих в состав нуклеопротеидных комплексов хроматина. При этом важно защитить ДНК от действия нуклеаз и максимально сохранить ее целостность, поскольку длинные линейные молекулы ДНК при их изоляции из клетки неизбежно фрагментируются [4].

Методы выделения ДНК обычно включают следующие этапы:

- 1. лизис клеток (или разрушение физическим, механическим способом);
- 2. ферментативное разрушение белков протеиназами и/или депротеинизация клеточного лизата с помощью фенола и хлороформа;
- 3. центрифугирование для удаления денатурированных белков и фрагментов клеточных органелл. Затем ДНК осаждают из раствора этанолом и после центрифугирования растворяют осадок в буферном растворе. Вместе с ДНК частично выделяется и РНК, от которой избавляются с помощью фермента РНКазы.

В работе использовали музейные штаммы лептоспир из «исторической» коллекции лаборатории противобактериозной биотехнологии: $L.pomona, L.icterohaemorrhagiae, L.tarassovi, L.canicola, L.hebdomadis, L.australlis, L.grippotyphosa. Лептоспиры культировали в водно-сывороточной среде при температуре <math>28^{\circ}\mathrm{C}$.

Для выбора оптимального варианта в работе использовали несколько методов выделения ДНК:

- выделение ДНК с помощью лизостафина;
- выделение ДНК с помощью сорбентов;

- способ выделения ДНК, основанный на использовании буферных растворов, содержащих высокие концентрации солей-хаотропов типа гуанидинтиоцианата;
- выделение ДНК из культуры лептоспир с помощью автоматической станции выделения нуклеиновых кислот Thermo Scientific King Fisher;
- выделение ДНК из бактериальной культуры лептоспир проводили обработкой протеолитическим ферментом протеиназой К;
- выделение ДНК из клеток лептоспир с помощью тритона X-100, разработанного сотрудниками лаборатории протвобактериозной биотехнологии КазНАУ.

Главными критериями при отработке оптимальных методов были концентрация и чистота препарата.

После выделения ДНК из клеток лептоспир вышеперечисленными методами проводили качественный и количественный анализ образца. Электрофорез проводили в 0.8% агарозном геле в ТАЕ-буфере. Спектрофотометрически измеряли отношение между оптическими плотностями при 260 и 280 нм. Максимум поглощения для нуклеиновых кислот регистрируется при длине волны 260 нм. Препарат ДНК считается свободным от примесей при величине отношений $E_{260/280}$, равной 1.8 и выше. Если этот показатель ниже указанного, то образец загрязнен белками или фенолом.

Образцы ДНК из клеток лептоспир, полученные с использованием детергентов лизостафина и сорбента, оказались невысокого качества. Отношения между оптической плотностью при длинах волн 260 и 280 нм в среднем составляли 1,65-1,7, что говорило о загрязненности ДНК белком и другими примесями.

Лучшие результаты были получены при обработке бактериосодержащей суспензии детергентом — 10% раствором додецилсульфата натрия в сочетании с протеиназой К и с последующей экстракцией фенол/хлороформом. Применение додецилсульфата натрия не только депротеинизирует бактериальную клетку, но также подавляет активность нуклеаз. Клеточные белки удаляли обработкой протеолитическим ферментом — протеиназой К. Для удаления белков и разрыва связей ДНК-белок использовали смесь фенол-хлороформ, которая является более сильным средством депротеинизации. Отношение оптической плотности (E_{260}/E_{280}) полученных препаратов ДНК лептоспир имело среднее значение 1,820 \pm 02.

Хорошие результаты дает использование автоматической станции выделения НК – Thermo Scientific King Fisher. Отношение оптической плотности (E260/E280) полученных препаратов ДНК лептоспир имело среднее значение 1,75±0,05.

Лучшие результаты были получены при использовании метода выделения ДНК из клеток лептоспир с помощью тритона X-100. Отношение оптической плотности (E260/E280) полученных препаратов ДНК Leptospira interrogans имело среднее значение 1.91 ± 0.03 (n=4).

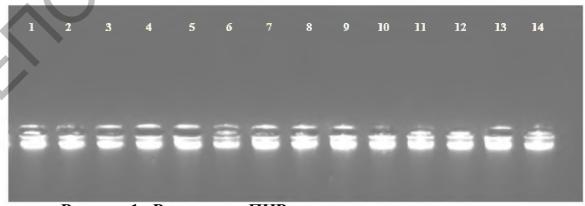


Рисунок 1 - Результаты ПЦР-анализа исследуемого штамма

Дорожки представляют собой образцы ДНК, выделенные из разных штаммов лептоспир. Дорожки с 1 по 7 - ДНК лептоспир, выделенные набором: Thermo

Scientific King Fisher, с 8 по 14 - ДНК из клеток лептоспир, выделенные с помощью тритона X-100, разработанного сотрудниками лаборатории протвобактериозной биотехнологии КазНАУ.

Выводы. Результаты качественного и количественного анализа показали, что при выделении ДНК из клеток лептоспир хорошие результаты дают использование автоматической станции выделения НК – Thermo Scientific King Fisher, метод обработки бактериосодержащей суспензии детергентом – 10% раствором додецилсульфата натрия в сочетании с протеиназой К, а также метод выделения ДНК из клеток лептоспир с помощью тритона X-100. Способы позволяют получить высокоочищенную хромосомную ДНК из клеток лептоспир в препаративном количестве, пригодную для постановки полимеразной цепной реакции (ПЦР) и для клонирования.

Литература. Hernandez-Rodriguez P., C. A. Diaz, E. A. Dalmau, G. M. Quintero. 2011, A comparison between polymerase chain reaction (PCR) and traditional techniques for the diagnosis of leptospirosis in bovines. J. Microbiol Met., 2011.- 84:1-7. 2. Vijayachari P., Sugunan A.P. Shriram A.N. Leptospirosis: an emerging global public health problem //J. Biosci. -2008. 33(4).- 557–569. 3. Киркимбаева Ж.С. Иммунопрофилактика лептоспироза сельскохозяйственных животных и пушных зверей: автореф. дисс. докт. вет. наук. —Алматы. -2004. -45с. 4. Малахов Ю.А., Панин А.Н., Соболева Г.Л. Лептостироз сельскохозяйственных животных. - Москва, 2000. — 420 с. 5. Павленко А.Л. Особенности эпидемиологии лептоспироза на современном этапе// Симферополь, Запорожский медицинский журнал.- 2013. №6.- С. 63-69.

УДК 612.62:612.017.11

СОСТОЯНИЕ ЭКСТРАЦЕЛЛЮЛЯРНОГО ПРОТИВОМИКРОБНОГО ПОТЕНЦИАЛА ФАГОЦИТОВ ПОЛОВЫХ ОРГАНОВ У КОШЕК

Желавский Н.Н., Шунин И.Н.

Подольский государственный аграрно-технический университет, г. Каменец-Подольский, Хмельницкая область, Украина

Введение. Система иммунной защиты животных сформировалась в процессе длительного эволюционного развития [1, 2]. Со дня открытия феномена фагоцитоза И.И. Мечниковым уже прошло более века. Невзирая на это, ученые разных стран мира продолжают проводить всестороннее исследование клеточных факторов защиты иммунной защиты и изучение взаимодействия иммунокомпетентных клеток [3-5].

Система локальной иммунной защиты органов размножения животных имеет сложное онтогенетическое развитие, которое четко подчинено генетической детерминации и нейрогуморальным механизмам регуляции [6-9]. В современных научных изданиях все больше появляется данных о роли фагоцитов в индукции цитокинов, синтеза пептидов, медиаторов и других биологически активных веществ, которые принимают роль как при формировании иммунного гомеостаза, так и в запуске каскада воспалительной реакции [3, 5, 8, 10]. На сегодняшний день центральным объектом исследований являются механизмы реализации противомикробной защиты фагоцитарных клеток (экскреция противомикробных соединений, формирование защитных ловушек и др.), а также изучение факторов регуляции функционального состояния фагоцитов [5, 8, 11, 12].

По данным многих исследователей возникновение и развитие репродуктивной патологии (вагинит, эндометрит, пиометра) часто возникают на фоне иммунологических нарушений [3, 7, 12, 15].

В связи с актуальностью проблемы целью нашей работы было исследовать функциональное состояние фагоцитарных клеток, а также изучить и интерпретировать роль их противомикробного потенциала в формировании гомеостаза в системе