Американскими учеными установлено, что высокопродуктивные коровы принимают корм до 12 раз в день и пребывают у кормового стола до 5 часов [12].

На пережевывание корма коровы III опытной группы затрачивали 25,2% суточного цикла, что меньше на 0,6 и 1,5% времени, чем животные из групп аналогов. Следует отметить, что коровы, которые отдыхали на резиновых покрытиях импортного производства, пережевывали корм в положении лежа и стоя – 53,1% и 46,9% соответственно от общей продолжительности жвачки. Животные ІІ опытной группы затрачивали на процесс жвачки в положении лежа (P<0,05), в положении стоя – 40,3%, коровы которые отдыхали на резиновых покрытиях «Экопол», пережевывали корм в положении лежа 55,4%, в положении стоя – 44,6%. Наибольшей продолжительностью отдыха отличались животные II опытной группы, у которых она составляла 52,4%, что на 1,9 и 2,5 п.п. больше при сравнении с суточным ритмом животных контрольной и III опытной групп. Norring et al. (2010) утверждают, что когда для животных в качестве подстилочного материала в боксах применяли резиновые покрытия, время отдыха увеличилось на 5,6 и 8,6 % соответственно по сравнению с животными, которым в качестве подстилочного материала для мест лежания использовали бетон и песок, время отдыха которых составляло 727 и 707 мин., или 50,5 и 49,1 % суточного цикла [12]. В положении лежа коровы III группы, отдыхали на 9,8% меньше чем коровы, которые лежали на резиновых покрытиях отечественного производства «Белшина» (520 мин.(Р<0,05)), и меньше на 1,5%, чем животные из группы контроля. Как отмечают в своих опытах Леткевич И.Ф. (1984). Шнайдер Р. (2007), если бокс для отдыха мягкий и сухой, увеличивается время отдыха животных [5,9].

По двигательной активности животные II опытной группы превосходили сверстниц из контроля и III опытной группы на 15,2 и 11,6%. Однако достоверной разницы не выявлено. Большей продолжительностью приема воды (1,2% суточного ритма) отличались животные III группы, она была выше на 4,7 мин. (Р<0,05) или 38,8% и на 3,2 мин. или 23,5% соответственно, чем у сверстниц-аналогов. Более продолжительное потребление воды обусловлено, вероятно, более высокой продолжительностью потребления кормов, у коров, которые отдыхали на резиновых покрытиях производства «Белшина». Следовательно, животные II опытной группы в течение суток на потребление кормов период жвачки, период отдыха, двигательную активность и потребление воды затрачивали больше времени, чем сверстницы из контроля и III опытной группы.

Заключение. Проведенными исследованиями установлено, что применение в качестве подстилочного материала отечественных резиновых покрытий ПО «Белшина» при беспривязно-боксовой системе содержания создает комфортные места отдыха, не уступают аналогам импортного и отечественного производства.

Литература. 1.Великжанин, В.И Методические рекомендации по использованию этологических признаков в селекции молочного скота : метод. рекомендации / В.И. Велихжанин ; Всерос. науч.-исслед. ин-т генетики и разведения сельскохозяйственных животных. – Санкт-Петербург, 2000. – 20с. 2. Зоогигиена: учебник / И.И. Кочиш [и др.]; под ред. И.И. Кочиша. - СПб.: Изд-во "Лань", 2008. - 464с. З. Интенсификация производства молока: опыт и проблемы: монография / В. И. Смунев [и др.] // — Витебск: ВГАВМ, 2011. — 486 с. 4. Курак, А.С. Обеспечить комфортные условия содержания для коров не менее важно, чем накормить / А.С. Курак // Наше сельское хозяйство. — 2011. - № 3. — С.69-75. 5. Леткевич, И. Ф. Технологическое и зооѓигиеническое обоснование новых конструкций полов на основе полимерных материалов в помещениях для крупного рогатого скота и свиней : автореф. бис. ... док. с.-х. наук : 06.02.04, 16.00.08 / И. Ф. Леткевич ; Бел. науч.-исслед. ин-т. животноводства– Жодино, 1984. – 351 с. 6. Мотузко, Н.С., Никитин Ю.И. Физиологические основы этологии сельскохозяйственных животных. - Витебск. -2003, 50с. 7.Новые типы полов для крупного рогатого скота / Плященко С.И. [и др.]. - Ветеринария. - 2008. - № 6. - С. 55-57. 8.Хазанов, В. Е. Повышение эффективности производства молока путем совершенствования технологии и технических средств беспривязного содержания и обслуживания крупного рогатого скота: автореф. дис. ... канд. техн. наук : 05.20.01 / В. Е. Хазанов ; Северо-Запад. научн.-исслед. ин-т механ. и электриф. с.х. Росс. акад. сельскохоз. наук — СПб, 2011. — 18 с. 9. Хайтмюллер, Х. Комфортные отели для коров /Х. Хайтмюллер // Новое сельское хозяйство. Спецвыпуск «Современные молочные фермы», 2007. – С. 24-29. 10. Шведов, В.В. Естественная вентиляция на фермах / В.В. Шведов // Зоотехния. - 2000. - № 6. - С. 23-26. 11. Юркова, Л.В. Поведение молочных коров при разных способах содержания / Л.В. Юркова // Зоотехния. – 1991. - № 12. – С.39-41. 12. Preference of dairy cows for three stall surface materials with small amounts of bedding / M. Norring [et al.] // Journal of Dairy Science. – 2010. – Vol. 93. - P. 70-74.

Статья передана в печать 22.08.2013

УДК 636.2.053.084

ОПТИМИЗАЦИЯ ФОСФОРНО-КАЛЬЦИЕВОГО ПИТАНИЯ ПЛЕМЕННОГО МОЛОДНЯКА КРУПНОГО РОГАТОГО СКОТА В МОЛОЧНЫЙ ПЕРИОД

Горячев И.И., Шаура Т.А.

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Применение повышенного уровня кальция и фосфора в рационах племенных бычков молочного периода относительно норм РАСХН (2003) оказало положительное действие на скорость роста, биохимические показатели крови и резистентность молодняка.

Application of the raised level of calcium and phosphorus in diets of breeding bull-calves of the milk period concerning norms of Russian Academy of Agrarian Sciences (2003) has had positive an effect on growth rate, biochemical indicators of blood and resistance of calves.

Ключевые слова: племенные бычки, кальций, фосфор, рацион, скорость роста, живая масса. **Keywords:** breeding bulls, calcium, phosphorus, diet, growth rate, body weight.

Введение. Общеизвестно, что обеспечение максимальной генетически обусловленной продуктивности, сохранения здоровья и высоких воспроизводительных качеств возможно лишь при удовлетворении потребности животных во всех элементах питания [1, с. 18]. Зная закономерности индивидуального развития организма, теми или иными условиями кормления и содержания можно направлять обмен веществ в нужную сторону, изменяя природу самого организма в пределах, заложенных генетикой, и тем самым получать животных с определенными качествами [2, с. 3]. Целью выращивания племенных бычков является получение крепких здоровых животных с плотной конституцией, хорошим экстерьером, с высокой воспроизводительной способностью, возможностью длительного использования, начиная с 14-15-месячного возраста [2, с. 105]. Поэтому кормление племенного молодняка крупного рогатого скота, начиная с первых месяцев жизни, должно не только обеспечивать высокую скорость роста, но и способствовать формированию крепкого костяка, плотной мускулатуры и поддержанию высокой резистентности организма.

Наряду с основными компонентами питания, исключительно важную роль в формировании и поддержании крепкого здоровья, обеспечении пищеварительных процессов, высокой продуктивности, развития и функционирования репродуктивных органов, регуляции приема корма и воды играют минеральные вещества [3, с. 6, 8]. Они должны поступать в организм животного с кормом, обеспечивая нормальный обмен веществ и энергии, образование ферментов, гормонов и тканей. Растущие животные используют значительную часть минеральных веществ для построения тканей и органов. Так, телята расходуют на эти цели 35-60 г зольных элементов в сутки [4].

Важнейшими макроэлементами для организма животного являются кальций и фосфор, которые составляют до 70% массы всех минеральных веществ, находящихся в теле животного [6, с. 13]. Основная часть кальция организма содержится в костяке (около 99%). Костная ткань является своеобразным депо этого элемента, которое находится в динамическом равновесии с кальцием кровеносной системы и служит буфером для поддержания стабильного уровня его циркуляции [5, с. 116, 7]. Несмотря на то, что только около 1% кальция содержится вне костяка, он является важным компонентом большинства клеток и тканевых жидкостей. Кальций активирует ферментную систему, благоприятно влияет на обмен железа и устраняет вредное воздействие избытка солей калия, магния, натрия и др. Ионы кальция укрепляют защитные функции организма, понижая клеточную проницаемость и повышая фагоцитарную активность лейкоцитов [3, с. 23-24, 9, с. 245]. Фосфор присутствует постоянно во всех органах и тканях организма. По сравнению с кальцием он биологически более активен: 83-85% его содержится в скелете и 15-17% — в остальных тканях. Все виды обмена веществ — белковый, углеводный, нуклеиновый, липидный, минеральный и энергетический — так или иначе связаны с обменом фосфора [3, с. 25, 10, с. 264]. У телят на 1 кг прироста приходится около 12-16 г кальция и 7-9 г фосфора. Поступать эти вещества должны в значительно больших количествах, так как утилизируются они в организме лишь на 30-40% [11, с. 221].

Отечественными и зарубежными учеными проведены исследования по пересмотру норм минерального питания молодняка крупного рогатого скота, в результате которых установлено положительное влияние увеличения уровня различных минеральных веществ на здоровье и продуктивные качества животных [2, с. 118-121, 12]. Однако нормы таких важных элементов, как кальций и фосфор, в кормлении племенных бычков молочного периода не пересматривались, хотя они были разработаны для обширной территории бывшего Советского Союза, где природно-экономические условия в разных регионах могут сильно отличаться от среднестатистических по стране и не позволяют учитывать все особенности кормов Беларуси [2, с. 118]. Целью нашей работы было установить влияние повышенного уровня кальция и фосфора в рационах племенных бычков молочного периода на их продуктивность и резистентность.

Материалы и методы исследований. Экспериментальная часть работы выполнена в условиях РСУП «Племзавод Кореличи» Кореличского района Гродненской области на племенных бычках 1-6-месячного возраста. Согласно приведенной схеме (табл. 1) были проведены два научнопроизводственных опыта (в зимний и летний периоды) продолжительностью 180 и 183 дня соответственно. В каждом опыте были сформированы по три группы бычков 1-месячного возраста по 10 голов в каждой, с учетом генотипа и живой массы. Подопытные животные находились в одинаковых условиях кормления и содержания. В начале каждого опыта был проведен зоотехнический анализ кормов, на основании которого каждой группе дополнительно к основному рациону в смеси с концентратами вводили мел и монокальцийфосфат. При этом животные І-контрольной группы получали кальций и фосфор в соответствии с нормами РАСХН (2003), ІІ группы — на 10%, ІІІ — на 20% больше указанных норм. Кроме того, рационы были сбалансированы по микроэлементам в соответствии с нормами РАСХН (2003) путем введения солей микроэлементов, по которым наблюдался дефицит. Динамику живой массы бычков молочного периода и ее прирост изучали путем индивидуального взвешивания в начале опыта и ежемесячно до его окончания. По данным результатов взвешивания определяли среднесуточный прирост.

Таблица 1 – Схема опытов

Taoshiqa T Oxema onbitob						
Группы	Кол-во бычков в группе (n)	Продолжительность опыта, дней	Условия кормления бычков			
І-контрольная	10		Основной рацион (OP) + мин. добавки (Ca и P по нормам PACXH)			
II-опытная	10	180	ОР + мин. добавки (норма РАСХН +10% Са и Р)			
III-опытная	II-опытная		OP + мин. добавки (норма РАСХН +20% Са и Р)			

Для исследования в начале и конце каждого опыта у 5-ти животных из каждой группы были отобраны пробы крови, анализ которых проводили в биохимическом отделе НИИ прикладной ветеринарной медицины и биотехнологии УО ВГАВМ по общепринятым методикам. В сыворотке крови определяли общий белок и его фракции (альбумины и α-, β-, γ-глобулины) — рефрактометром ИРФ-22; витамины А и Е — на флюорате-02М, кальций — колориметрическим методом с о-крезолфталеином, неорганический фосфор — колориметрическим методом с молибдат-ионами без депротеинизации, магний — нефелометрическим методом с ЕСТА, активность щелочной фосфатазы — кинетическим методом на автоматическом биохимическом анализаторе «Eurolyser». В стабилизированной крови определяли гемоглобин и эритроциты с использованием автоматического гематологического анализатора клеток «Авасиз junior vet». Фагоцитарную активность лейкоцитов определяли по В.И. Гостеву, лизоцимную активность сыворотки крови — по Мюнселю и Треффенсу в модификации О.В. Смирновой и Т.А. Кузминой.

Цифровой материал обработан статистически на персональном компьютере с помощью ПП Excel.

Результаты исследований. Одним из важнейших показателей, характеризующих степень развития животных, является живая масса (табл. 2). Результаты летнего научно-производственного опыта показали, что в начале исследований живая масса бычков была приблизительно одинаковой и колебалась в пределах 31,5-31,8 кг. В конце опыта наблюдались значительные различия живой массы подопытных животных по группам. Так, средняя живая масса бычков II опытной группы составила 204,4 кг, что на 3,1 кг, или на 1,5% (P<0,05) выше по сравнению с животными контрольной группы. Данный показатель в III группе составил 208,3 кг, что на 7 кг, или на 3,5% (P<0,01) выше по сравнению с результатом, полученным в контрольной группе. При этом животные III группы превзошли животных II группы на 3,9 кг, или на 1,9%. Бычки II и III опытных групп превзошли животных I группы по среднесуточному приросту за период проведения опыта соответственно на 16,4 г и 36,4 г.

Затраты кормов на 1 кг прироста во II и III группах составили 4,06 и 4,04 корм. ед., или на 1,5-2% ниже по сравнению с первой группой.

В зимний период динамика живой массы и среднесуточных приростов была следующей: если в начале опыта живая масса бычков была 31,7-32,0 кг, то в конце опыта она возросла по группам до 197,4-204,2 кг. При этом среднесуточный прирост по сравнению с І-контрольной группой был выше во ІІ группе на 2,1% и в ІІІ группе – на 4,2% (Р<0,05).

Затраты кормов на 1 кг прироста во II и III группах составили 4,08 и 4,06 корм. ед., или на 1,7-2,2% ниже по сравнению с I-контрольной группой.

Таким образом, повышенный уровень кальция и фосфора в рационах племенных бычков молочного периода положительно повлиял на скорость роста подопытных животных. При этом как в летний, так и в зимний периоды самыми высокими показателями отличались бычки ІІІ группы, в рационе которых норма данных элементов была увеличена на 20% по сравнению с нормами РАСХН (2003).

Таблица 2 – Динамика живой массы и среднесуточных приростов подопытных бычков

		OH MAROEN II OPOMI			enennen een				
	Живая масса в начале опыта,	Живая масса в конце опыта, кг	Валовой прирост, кг	Среднесуточный прирост		Затраты кормов			
Группа				граммов	в%к	на 1 кг прироста,			
	KΓ	конце опыта, кі			контролю	корм. ед.			
Летний период									
	31,5±0,33	201,3±1,25	169,8	922,8±12,1	100	4,12			
II	31,6±0,25	204,4±0,74*	172,8	939,2±13,3*	101,7	4,06			
III	31,8±0,25	208,3±1,3**	176,5	959,2±13,2**	103,9	4,04			
Зимний период									
	32,0±0,8	197,4±1,5	165,4	918,9±13,2	100	4,15			
II	31,7±1,0	200,6±2,1	168,9	938,3±12,4	102,1	4,08			
III	31,9±0,8	204,2±2,4*	172,3	957,2±11,7*	104,2	4,06			

Примечание: * - Р<0,05, ** - Р < 0,01

Скармливание рационов с повышенным уровнем кальция и фосфора не оказало отрицательного воздействия на клинические показатели крови подопытных животных. Результаты гематологических исследований представлены в таблице 3. В опыте, проведенном в летний период, по всем показателям анализа крови бычки II и III опытных групп превзошли аналогов I группы, при этом по содержанию эритроцитов — на 4,1 и 8,1%, гемоглобина — на 3,2 и 6,3%, резервной щелочности — на 9,4 и 12,2%, количеству общего белка крови — на 4,1 и 11,7%, альбуминов — на 1,6 и 3,1%, ү-глобулинов — на 3,2 и 6,7% соответственно. При этом разница по указанным показателям между I-контрольной группой и III опытной была достоверна при P<0,05. Кроме того, повышенный уровень кальция и фосфора в рационах

бычков благоприятно отразился и на минеральном обмене. Так, в крови молодняка II и III групп содержание кальция было выше на 5,8 и 7, 9% (P<0,05), фосфора – на 9,7 и 16,1% (P<0,05), а активность щелочной фосфатазы ниже на 11,3 и 20,8% (P<0,05) соответственно по сравнению с контролем.

Таблица 3 – Показатели крови племенных бычков в конце опыта

Таолица 3 — Показатели	Ī					
Показатели	Группы [лет	гний	зимний		
		количество	в % к контролю	количество	в % к контролю	
		6,82±0,12	100	6,78±0,20	100	
Эритроциты, 10 ¹² /л		7,10±0,33	104,1	7,40±0,30	109,1	
	III	7,37±0,16*	108,1	7,53±0,2*	111,1	
		104,8±2,20	100	103,8±1,3	100	
Гемоглобин, г/л		108,2±2,58	103,2	107,3±1,3	103,4	
	III	111,4±1,51*	106,3	108,7±1,4*	104,7	
Pasannuag wagawaati		427±13,0	100	420,5±11,0	100	
Резервная щелочность, ммоль/л	- II	467±14,0	109,4	454,8±10,8*	108,2	
MINIOTENT	III	479±15,0*	112,2	463,0±10,1*	110,1	
		68,5±2,11	100	68,0±2,0	100	
Общий белок, г/л	- II	71,3±3,01	104,1	73,4±3,0	107,9	
	III	76,5±1,97*	111,7	75,2±1,8*	110,6	
		42,5±0,30	100	42,8±0,47	100	
Альбумины, %	II	43,2±0,15	101,6	44,0±0,40	102,8	
	III	43,8±0,3*	103,1	45,1±0,53*	105,4	
		25,3±0,42	100	24,0±0,53	100	
ү-глобулины, %	- II	26,1±0,31	103,2	26,4±0,72*	110,0	
	III	27,0±0,40*	106,7	27,3±0,87*	113,8	
Активность щелочной	1	2033,4±109,7	100	2156,6±91,4	100	
фосфатазы, нкат/л	- II	1804,2±121,3	88,7	1923,6±106,8	89,2	
фосфатазы, пкати	III	1609,6±125,1*	79,2	1789,4±106,3*	83,0	
		2,78±0,08	100	2,75±0,07	100	
Кальций, ммоль/л		2,94±0,19	105,8	2,91±0,08	105,8	
	III	3,00±0,06*	107,9	2,98±0,05*	108,4	
		1,43±0,06	100	1,49±0,06	100	
Фосфор, ммоль/л	ll l	1,57±0,09	109,7	1,61±0,04	108,1	
	III	1,66±0,07*	116,1	1,68±0,04*	112,8	
	1	1,08±0,05	100	1,09±0,03	100	
Магний, ммоль/л	11	1,15±0,02	106,5	1,17±0,02	107,3	
	111	1,19±0,01	110,2	1,18±0,04	108,3	
		5,27±0,25	100	5,44±0,15	100	
Витамин Е, мкмоль/л	II	5,57±0,19	105,7	5,68±0,23	104,4	
	W	5,43±0,23	103,0	5,81±0,25	106,8	
	i	1,54±0,13	100	1,33±0,10	100	
Витамин А, мкмоль/л	II	1,58±0,14	102,6	1,38±0,08	103,8	
	III	1,66±0,15	107,8	1,43±0,02	107,5	

Примечание: * - Р<0,05

В зимний период выявлена аналогичная тенденция в превосходстве показателей крови опытных групп над контролем. Животные II опытной группы в 6-месячном возрасте превзошли молодняк I контрольной группы по содержанию в крови эритроцитов, гемоглобина, резервной щелочности, общего белка, альбуминов и у-глобулинов на 9,1%, 3,4, 8,2 (P<0,05), 7,9, 2,8 и 10% соответственно. Бычки III опытной группы превзошли контрольных животных по содержанию эритроцитов на 11,1%, гемоглобина — на 4,7%, резервной щелочности — на 10,1%, общего белка — на 10,6%, альбуминов — на 5,4% и у-глобулинов — на 13,8% при достоверной разнице (P<0,05).

В крови молодняка II и III групп содержание кальция было выше на 5,8 и 8,4% (Р<0,05), фосфора — на 8,1 и 12,8% (Р<0,05) соответственно по сравнению с аналогами контрольной группы. В 6-месячном возрасте активность щелочной фосфатазы в крови бычков II опытной группы была на 10,8%, III группы — на 17,0% (Р<0,05) ниже, чем у аналогов I контрольной группы. Это свидетельствует о более интенсивной минерализации костяка бычков II и III опытных групп по сравнению с контролем. При изучении влияния различных уровней кальция и фосфора в рационах ремонтных бычков молочного периода на показатели естественной резистентности в летний период было установлено (табл. 4), что животные II и III опытных групп превзошли животных контрольной группы по всем представленным показателям в 6-месячном возрасте: по лизоцимной активности сыворотки крови — на 0,9 и 1,6%, по бактерицидной активности сыворотки крови — на 2,6 и 2,8%. Однако разница по всем показателям не выходила за пределы достоверной границы случайных колебаний.

Таблица 4 – Показатели естественной резистентности племенных бычков

Taosinga + Tiorasaresin coreorbeilinon pesnorelitilootu tistemetilisis obi-irob								
	ЛАСК	ζ, %	БАСІ	< , %	ФАЛ, %			
Группа	начало опыта	конец опыта	начало опыта	конец опыта	начало опыта	конец опыта		
	Летний период							
I	4,46±0,28	6,10±1,64	53,8±4,77	59,7±2,76	53,0±2,43	58,7±2,41		
- II	4,52±0,29	7,00±1,52	54,7±2,52	62,6±1,40	52,7±3,00	61,3±2,95		
III	4,54±0,27	7,73±1,23	53,8±5,09	68,2±2,78	51,1±2,80	61,5±2,51		
	Зимний период							
I	4,32±0,33	5,74±0,54	52,16±2,80	59,12±1,68	49,34±2,10	59,14±2,08		
[]	4,40±0,59	6,92±0,51	52,10±3,58	63,02±1,80	49,20±2,36	63,40±1,59		
III	4,28±0,60	7,24±0,65	51,66±4,18	64,28±1,91	50,20±3,50	66,00±1,96*		

Примечание: * - Р<0,05

В опыте, проведенном в зимний период, установлено, что животные, имевшие повышенный уровень кальция и фосфора в рационах относительно норм РАСХН (2003), в конце опыта превзошли животных контрольной группы по всем представленным показателям. Так, у бычков II и III опытных групп лизоцимная активность сыворотки крови была выше на 1,2 и 15%, бактерицидная активность — на 3,9 и 5,2% и фагоцитарная активность лейкоцитов крови — на 4,3 и 6,9% (Р<0,05) по сравнению с аналогами I группы. На основании полученных результатов можно отметить, что увеличение уровня кальция и фосфора в рационах племенных бычков молочного периода положительно повлияло на показатели естественной резистентности молодняка как в летний, так и в зимний период. Это можно связать с влиянием этих элементов на проницаемость клеточных и внутриклеточных лизосомных мембран, активацией кальцием ряда клеток иммунной системы и способности его повышать фагоцитарную активность лейкоцитов.

Заключение. Таким образом, применение повышенного на 20% относительно норм РАСХН (2003) уровня кальция и фосфора в рационах племенных бычков молочного периода в летний и зимний периоды способствует повышению среднесуточных приростов живой массы на 3,9-4,2%, увеличению показателей естественной резистентности и благоприятно влияет на морфологический и биохимический состав крови.

Литература. 1. Нормы и рационы кормления сельскохозяйственных животных: справ. пособие / А.П. Калашников [и др.]. — Москва, 2003. — 456 с. 2. Выращивание молодняка крупного рогатого скота: Монография / В.И. Шляхтунов [и др.]. — Витебск, 2005. — 184 с. 3. Кучинский, М.П. Биоэлементы — фактор здоровья и продуктивности животных : монография / М.П. Кучинский. — Минск : Бизнесофсет, 2007. — 372 с. 4. Влияние минеральных добавок из местных источников сыряя на эффективность выращивания молодняка крупного рогатого скота / А.Н. Кот [и др.] // Сб. науч. тр. / УО ВГАВМ. — Витебск, 2010. — Т. 46. — Вып. 1. — Ч. 2: Ученые записки УО ВГАВМ. — С. 157-160. 5. Хохрин, С.Н. Кормление сельскохозяйственных животных / Сл. Хохрин. — Москва: КолосС, 2004. — 692 с. 6. Подобед. — Одесса, 2005. — 410 с. 7. Ланцов фосфорному питанию сельскохозяйственных животных и птицы / Л.И. Подобед. — Одесса, 2005. — 410 с. 7. Ланцов, А.В. Впияние монокальцияфосфата и микроэлементов в рационе племенных бычков на их рост, качество и количество спермопродукции / Д.В. Ланцов // Сб. науч. тр. / УО ВГАВМ. — Витебск, 2010. — Т. 46. — Вып. 1. — Ч. 2: Ученые записки УО ВГАВМ. — С. 164 — 167.8. Колунов, Ю.А. Роль макроэлементов в жизнедеятельности животных / Ю.А. Колунов, В.А. Яковлев, А.В. Обухов // Сельскохозяйственный практикум. — 2000. — №2. — С. 12-18. 9. Пономаренко, Ю.А. Корма, кормовые добавки и продукты питания : монография / Ю.А. Пономаренко. — Минск : Экоперспектива, 2010. — 736 с. 10. Зайцев, С.Ю. Биохимия животных. Фундаментальные и клинические аспекты: учебник / С.Ю. Зайцев, Ю.В. Конопатов. — Санкт-Петербург: Издательство «Лань», 2004. — 384 с. 11. Пестис, В.К. Кормление сельскохозяйственных животных: учеб. пособие. / В.К. Пестис, А.П. Солдатенко. — Минск: Ураджай, 2000. — 335 с. 12. Невар, А.А. Влияние премиксов с различным уровнем минеральных веществ и витаминов на интенсивность роста ремонтных бычков в молочный период // Зоотехническая наука Беларуси: сборник научных трудов / НПЦ НАН Беларуси по животноводству. — Жодино, 2006. — Т.41. — С. 1

Статья передана в печать 14.08.2013

УДК 619:618.36.008.64

ПРОНИЦАЕМОСТЬ МИНЕРАЛЬНЫХ ВЕЩЕСТВ СКВОЗЬ ПЛАЦЕНТАРНЫЙ БАРЬЕР КОРОВ

*Грищук Г.П., **Омельяненко Н.Н.

*Государственный агроэкологический университет, г. Житомир, Украина
**Национальный университет биоресурсов и природопользования Украины, г. Киев, Украина

Представлены результаты исследований проницаемости плацентарного барьера коров для минеральных веществ в направлении кровь → материнская → фетальная часть плаценты при нормальном течении отела и при задержании последа. Установлено, что, проникая сквозь плацентарный барьер, минеральные вещества в разном количестве накапливаются в материнской и фетальной частях плаценты.