добавления лектин-специфичных сахаров. Другим интересным методом является создание мутантных линий кукурузы, с пониженной экспрессией генов, кодириующих указанные лектины. Данный подход, при условии сохранения устойчивости к патогеном, будет более простым с точки зрения приготовления кормов.

Негативный контроль, используемый в нашем исследовании, показал уровень связывания с лектинами кукурузы в среднем в 2 раза ниже, чем исследуемые белки (минимум — 857 Ед. для галактоза/рамноза узнающего лектина, максимум — 1321 Ед. для лектина бобовых). В целом, это свидетельствует о эффектиновсти нашего методического подхода.

Заключение. В результате наших исследований было определено, что лектины кукурузы (галектин, лектин бобовых, акалин-подобный лектин и хитинсвязывающий белок 1 типа) способны связываться с переносчиком двухвалентных металлов 1 (DMT1) и транспортер меди (Q8WNR0), вызывая нарушения абсорбции железа и меди, соответственно.

Jumepamypa. 1. The Effect of Plant Proteins Derived from Cereals and Legumes on Heme Iron Absorption / V. Weinborn [et al.] // Nutrients. -2015. -№ 7. -P. 8977–8986. 2. Dietary soya beans and kidney beans stimulate secretion of cholecystokinin and pancreatic digestive enzymes in 400-day-old Hooded-Lister rats but only soya beans induce growth of the pancreas / G. Grant [et al.] // Pancreas. $-2000. - N_{\odot} 20. - P. 305-312.$ 3. Greer, F. Toxicity of kidney bean (Phaseolus vulgaris) in rats: changes in intestinal permeability / F. Greer, A. Pusztai // Digestion. -1985. $-N_{\odot}$ 32. -P. 42–46. 4. Pusztai, A. Transport of proteins through the membranes of the adult gastro-intestinal tract – a potential for drug delivery? / A. Pusztai // Adv. Drug Deliv. Rev. − 1989. − N_{2} 3. − P. 215–228. 5. Maize β -Glucosidase-aggregating Factor Is a Polyspecific Jacalin-related Chimeric Lectin, and Its Lectin Domain Is Responsible for β -Glucosidase Aggregation / F. S. Kittur [et al.] // J. Biol. Chem. -2007. $-N_{\odot}$ 282. -P. 7299-7311. 6. Dabravolski, S. A. Effect of corn lectins on the intestinal transport of trace elements / S. *A. Dabravolski*, Y. K. Kavalionak // J. Consum. Prot. Food Saf. − 2020. − № 15. − P. 163–170. 7. The SWISS-MODEL Repository—new features and functionality / S. Bienert [et al.] // Nucleic Acids Res. – 2017. – No 45. – P. 313–319. 8. Chen, R. Docking unbound proteins using shape complementarity, desolvation, and electrostatics / R. Chen, Z. Weng // Proteins Struct. Funct. Genet. -2002. $-N_{\odot}$ 47. -P. 281–294. 9. Nose, Y. Ctrl drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function / Y. Nose, B.-E. Kim, D. J. Thiele // Cell Metab. -2006. $-N_{\odot}$ 4. -P. 235–244. 10. Dual-function protein in plant defence: seed lectin from Dolichos biflorus (horse gram) exhibits lipoxygenase activity / S. *Roopashree* [et al.] // Biochem. J. -2006. -№ 395. -P. 629–639.

УДК 631.15:606+620.3

ИСПОЛЬЗОВАНИЕ НАНОЧАСТИЦ СЕРЕБРА И МЕДИ ПРИ КОНСТРУИРОВАНИИ КОМПЛЕКСНЫХ ВЕТЕРИНАРНЫХ ПРЕПАРАТОВ (аналитический обзор)

Красочко П.А., Понаськов М.А., Корочкин Р.Б.

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Введение. Нерациональное использование антибактериальных препаратов (несоблюдение кратности, дозировки, курса лечения), применения в качестве стимуляторов роста приводит к длительному накоплению в организме, что способствует развитию антибиотикорезистентных форм микроорганизмов [5, 34].

Так, по данным С.В. Щепткина (2016 г.), с 2013 по 2015 год чувствительность микроорганизмов к фторхинолонам уменьшилась на 27%, в группе аминогликозидов – 42%, тетрациклинов — 67% [5].

Всемирная организация здравоохранения (ВОЗ) 7 апреля 2011 г. определила антибиотикорезистентность как глобальную проблему, требующую незамедлительного решения. Для решения поставленной задачи необходимо конструировать и внедрять в практику новые лекарственные препараты, которые не вызывают развития резистентности у патогенных микроорганизмов. К таким относятся наночастицы биоэлементов, пробиотики, пребиотики, бактериофаги, фитопрепараты, органические кислоты, продукты пчеловодства и т.д. [25].

На современном этапе наиболее перспективным и эффективным признано конструирование препаратов на основе наночастиц биоэлементов [29].

В представленной статье авторы приводят анализ литературных данных об использовании препаратов на основе наночастиц серебра и меди.

Материалы и методы исследований. Работа выполнена на кафедре эпизоотологии и инфекционных болезней УО ВГАВМ. Проведен анализ литературных источников отечественных и зарубежных авторов.

Результаты исследований. Анализ литературных источников отечественных и зарубежных авторов позволил получить следующие сведения.

Согласно номенклатуры Международного союза теоретической и прикладной химии (IUPAC) наночастицы – это аморфные или полукристаллические структуры, которые имеют хотя бы один пространственный размер в диапазоне 1–100 нм [9].

Наночастицы металлов обладают особыми физико-химическими свойствами, отличающимися от свойств металлов и их отдельных атомов, обеспечивая терапевтический эффект, во много раз превосходящий эффект от применения ионной формы элементов [12, 13, 16].

Наночастицы можно условно разделить на несколько классов.

Таблица - Классы наночастиц

Виды наночастиц	Разновидности
Биологические и	Ферменты, белки, рибосомы, вирусы
биогенные наночастицы	
Полимерные наночастицы	Полиэтиленгликоль, полигликолевая и полимолочная
	кислоты
Дендримеры	Полиамидоамин, лизин
Углеродные наночастицы	Нанотрубки, фуллерены
Неорганические	Наночастицы металлов: золото, серебро, платина, титан,
наночастицы	цинк, железо, оксид кремния
Квантовые точки	Полупроводниковые нанокристаллы
Супермагнитные	Магнетит (смесь различных оксидов железа)
наночастицы	
Полимерные мицеллы	Мицеллы – переносчики гидрофобных лекарственных
	препаратов
Липосомы	Малые, большие и многослойные липосомы
Перфторуглеродные	Наночастицы, состоящие из жидкого перфторуглеродного
наночастицы	ядра, покрытые липидным монослоем

Одними из наиболее широко применяемых в разных сферах являются наночастицы металлов.

Наночастицы серебра. Благодаря своим уникальным свойствам (широким спектром противомикробного, противогрибкового и противовирусного действия, иммуномодулирующими и аллергенными свойствами, отсутствием устойчивости к нему у большинства патогенных микроорганизмов, низкой токсичностью) с древних времен серебро широко используется в медицине и ветеринарии [17, 18, 23, 30].

Согласно исследованиям R. Vazquez-Munoz et al. (2017) установлено, что наносеребро оказывает почти одинаковое негативное воздействие в диапазоне концентраций от 1 до 100 мг/л независимо от выбора тест-объекта (вирусы, бактерии, микроводоросли, грибы, клетки животных и человека) [33].

Согласно результатов опытов Э.В. Малафеевой и др. (2011) было установлено, что коллоидные растворы наночастиц серебра проявляют высокое антимикробное и противогрибковое действие по отношению к грамотрицательной (E. coli, K. pneumoniae, K. oxytoca, M. morganii, P. aeruginosa, Serratia, Enterobacter) и грамположительной микрофлоре (S. aureus, S. haemolyticus, S. hyicus, S. epidermidis, E. faecalis), дрожжеподобных грибов и грибов рода Candida [11].

Под влиянием нано серебра повышается количество иммуноглобулинов, увеличивается процентное содержание лимфоцитов в организме животных и человека [20].

Механизм действия наноразмерных частиц серебра весьма разносторонний и комплексный, имея в конечном итоге ярко выраженный цито- и генотоксический эффект. Давно отмечено, что под воздействием наночастиц серебра в клетке отмечают целый комплекс метаболитических сдвигов, приводящих к плазмолизу и ее гибели. Наиболее действенным механизмом действия наночастиц серебра является появление в клетке активных форм кислорода, изменение регуляции активности генов, нарушение архитектуры клеточной стенки и необратимое связывание множества метаболитов. Предполагается, что именно эта комбинация воздействий является причиной цитотоксичности, биохимических маловероятно, что активность лишь одного из перечисленных факторов приводит к гибели клетки. Хотя подобные механизмы могут иметь выраженный токсичный эффект также и в отношении клеток млекопитающих из-за сходства в композиции биомолекул (липидов, белков и ДНК), потенциальное применение наночастиц серебра для лечения бактериальных инфекций может быть таргетировано на воздействие на специфические лиганды и рецепторы бактериальных клеток [12, 13].

Наночастицы меди. Наночастицы меди проявляют ярко выраженную биологическую активность, в т. ч. бактериостатическое и бактерицидное действия. Согласно исследованиям Красочко П.А. и др. (2018, 2019) наночастицы оказываюит выраженное антибактериаотной действие против условно-патогенных бактерий (*Escherichia coli*, *Staphylococcus aureus* и др.) [8].

Согласно результатам полученных Gunawan C. et al. (2011), Maqusood Ahamed et al. (2014) установлено высокая антимикробная активность в отношении различных штаммов бактерий (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterococcus faecalis, Shigella flexneri, Salmonella typhimurium, Proteus vulgaris u Staphylococcus aureus) [28, 31].

Препараты наночастиц меди, введенные в организм животных, обладают пролонгированным действием и меньшей токсичностью по сравнению с солями. Наночастицы меди при введении в организм стимулируют механизмы регуляции микроэлементного состава и активность антиоксидантных ферментов [1].

Механизм антибактериального действия наномеди в целом считается подобным таковому наночастиц серебра, однако очевидны некоторые отличия в его выраженности. Несмотря на то, что наночастицы серебра выделяют в 253 раза больше ионов металла по сравнению с наночастицами серебра, в первом случае отмечают менее выраженный антибактериальный эффект. Данное обстоятельство может быть объяснено гораздо более существенной ролью, которую медь играет в метаболизме клетке. В частности, она является важным элементом, участвующим в качестве кофактора для различных ферментативных систем, например, тех, которые участвуют в окислительно-восстановительных реакциях, необходимых для клеточного дыхания (цитохромоксидаза) и супероксиддисмутазы (антиоксидантная защита). Таким образом, различия в антимикробной активности серебра и меди могут найти объяснение в двух гипотезах. Согласно первой из них, оба металла обладают высоким сродством к тиолам, включая цистеин – уникальную тиолсодержащую аминокислоту. Медь имеет более высокое сродство к цистеину по сравнению с серебром (приблизительно в 100 раз). Тем не менее, она подвергается дальнейшему гомеостазному превращению. В частности, после связывания с цистеином, медь восстанавливается с одновременным образованием цистина, окисленного димера цистеина, в результате дисмутации замещенного иона меди. В случае с серебром, подобный механизм гомеостаза при связывании остатка цистеина отсутствует, поэтому после осаждения металла цистеин остается недоступным в качестве функциональной аминокислоты. Согласно второй гипотезе, отдельные биомолекулы, такие как восстановленный глутатион, могут подвергаться окислению в результате биохимических реакций, катализируемых медью [24].

Помимо неоспоримых положительных свойств наночастиц, большинство исследователей указывает на *отрицательные стороны применения* препаратов на их основе, которые определяются цитотоксическим, генотоксическим и другим негативным воздействием как на организм, так и на экологию [15].

Согласно многочисленным научным исследованиям, использование наночастиц при конструировании препаратов может приводить к следующим экологическим рискам (загрязнение окружающей среды, расстройство здоровья живых организмов и др.) [3].

Так попадание и накопление наночастиц в организме животных и человека может оказывать выраженный нейротоксический эффект, нарушать гомеостаз, ускоряя процессы старения и изменяя ход течения патологий, так как организм не инертен к наноразмерным формам микроэлементов, что было подтверждено эффективностью гомеопатических препаратов, в которых они присутствовали [19].

У лабораторных животных, находящихся под воздействием наночастиц, были выявлены злокачественные образования. Наночастицы серебра и меди оказывают значительное влияние на обмен веществ животных и человека [5].

Особенно опасны наночастицы серебра, наиболее активные по сравнению с обычными формами серебра. Степень такой опасности пока невозможно оценить, исходя лишь из знаний о токсичности серебра в макроформе.

Накопленные наукой данные констатируют, что действие техногенных наночастиц на среду обитания может быть непредсказуемым и опасным [7].

Заключение. Потенциальные перспективы использования нанотехнологий революционизировали ветеринарную медицину. Разносторонний механизм действия определяет их высокую эффективность и снижает риск появления в биосфере резистентных форм микроорганизмов. Тем не менее, их широкому внедрению в повседневную практику пока еще препятствует недостаточная изученность всего спектра их положительного и отрицательного организм воздействия на И экологию, что определяет первоочередную необходимость проведения исследования в данной области.

Заключение. На основании проведенного анализа литературных источников можно сделать следующие выводы:

- 1. Использование наночастиц серебра и меди является перспективным направлением в ветеринарии и медицине, так как они обладают разносторонним воздействием на организм с выраженными антибактериальными свойствами.
- 2. Препараты на основе наночастиц серебра и меди являются альтернативой использования антибиотиков, не способствуют эволюции бактерий и возникновению резистентности.

Литература. 1. Аттестация и применение наночастиц металлов в качестве биологически активных препаратов / И. П. Арсентьева [и др.] // Нанотехника. Спец. вып. : Нанотехнологии медицине. – 2007. – № 2. (10). – С. 72–77. 2. Ветеринарные и технологические мероприятия при содержании крупного рогатого скота: монография / П. А. Красочко [и др.]; под общ. ред. П. А. Красочко. – Смоленск: Универсум, 2016. – 508 с. 3. Влияние наночастиц на окружающую среду и здоровье человека / А. Н. Янущик [и др.] // Молодой ученый. — 2018. — № 17. — С. 126—128. 4. Влияния наночастиц серебра и цинка на структурные особенности клеток / Π . А. Красочко [и др.] // Advances in agricultural and biological sciences. -2018. -T. 4, N_{2} 6. -C. 35–44. 5. Диагностика инфекционных болезней сельскохозяйственных животных: вирусные заболевания / А. А. Шевченко $[u \ dp.]$; под общ. ред. А. А. Шевченко — Краснодар: Куб Γ АУ, 2018. — 485 с. б. Диагностика инфекционных болезней сельскохозяйственных животных: бактериальные заболевания : монография / А. А. Шевченко [и др.] ; под общ. ред. А. А. Шевченко. – Краснодар : Куб Γ АV, 2018. — 701 с. 7. Занина, К. А. Влияние нанотехнологий и наноматериалов на человека и остальной живой мир / К. А. Занина, А. П. Цуркин // Технические науки: традиции и инновации : материалы ІІ Международной научной конференции (г. Челябинск, октябрь 2013 г.). – Челябинск : Два комсомольца, 2013. – С. 21–24. 8. Изучение антибактериальных свойств коллоидных растворов наночастиц серебра и меди / П. А. Красочко [и др.] // Ветеринарный журнал Беларуси. – 2019. – № 1. – С. 41–44. 9. К разработке критериев безопасности наночастиц металлов при введении их в организм животных / Е. А. Сизова [и др.] // Вестник Российской академии сельскохозяйственных наук. — 2011. — № 1. — С. 40–42. 10. Красочко, П. А. Продукты пчеловодства в ветеринарной медицине / Π . А. Красочко, Н. Г. Еремия ; науч. ред. Π . А. Красочко. – Минск : ИВЦ Минфина, 2013. – 670 с. 11. Малафеева, Э. В. Антимикробная и токсикологическая характеристика антибактериальной мази с наночастицами серебра / Э. В. Малафеева // Ремедиум. – 2011. – № 4. – С. 96–97. 12. Якубовский, М. В. Нанотехнологии в ветеринарной медицине: (сообщение первое) / М. В. Якубовский, И. А. Tрус // Наше сельское хозяйство. -2011. -№ 1. - С. 26–30. 13. Наночастицы и нанотехнологии в медицине сегодня и завтра / Л. Ф. Абаева [и др.] // Альманах

клинической медицины. — 2010. — N 22. — C. 22—35. 14. Новые и возвращающиеся болезни животных : монография / А. И. Ятусевич [и др.]. – Витебск : ВГАВМ, 2016. – 400 с. 15. Опасности и риски нанотехнологий и наноматериалов [Электронный ресурс] / К. И. Иванов [и др.] // Медицинские новости. – 2013. – № 4 (223). – Режим доступа : https://cyberleninka.ru/article/n/opasnosti-i-riski-nanotehnologiy-i-nanomaterialov. доступа : 03.02.2020. 16. Определение антибактериальной активности коллоидных растворов наночастиц биоэлементов диффузионным методом / П. А. Красочко [и др.] // Наука в современном обществе: закономерности и тенденции развития: сборник статей Международной научно-практической конференции (г. Стерлитамак, 4 апреля 2019 г.). – Стерлитамак : МЦИИ Омега Сайнс, 2019. – С. 204–207. 17. Пиотровский, Л. Б. Наномедицина как часть нанотехнологий / Л. Б. Пиотровский // Вестник Российской академии медицинских наук. $-2010. - N_2 3. - C. 41-46. 18.$ Гохберг, Л. М. Прогноз научнотехнологического развития России: 2030. Новые материалы и нанотехнологии / Л. М. Гохберг, А. Б. Ярославцев ; под. ред. Л. М. Гохберга, А. Б. Ярославцева. – Москва : Национальный исследовательский университет «Высшая школа экономики», 2014. – 52 с. 19. Сизова, Е. А. Биоэкологическая оценка различных тест-объектов при контакте с металлами в наноформе / Е. А. Сизова, С. А. Мирошников // Актуальная биотехнология. — 2016. - № 3 (18). - C. 106–108. 20. Федотчева, Т. А. Перспективы применения наночастицзолота, серебра и оксида железа для повышения эффективности химиотерапии опухолевых новообразований / Т. А. Федотчева // Химико-фармацевтический журнал. — 2015. – № 4 (49). – С. 11–22. 21. Физиологические основы проявления стрессов и пути их коррекции в промышленном животноводстве : монография : в 2 ч. Ч. 1 / Ф. И. Фурдуй [и др.]; под ред. П. А. Красочко. – Горки : БГСХА, 2013. – 564 с. 22. Физиологические основы проявления стрессов и пути их коррекции в промышленном животноводстве : монография : в 2 ч. Ч. 2 / Ф. И. Фурдуй [и др.] ; под ред. П. А. Красочко. – Горки : БГСХА, 2013. – 492 с. 23. Хамидулина, Х. Х. Международные подходы к оценке токсичности и опасности наночастиц и наноматериалов / Х. Х. Хамидулина, Ю. О. Давыдова // Токсикологический вестник. -2011. -№ 6. - C. 53-57. 24. Шевченко, A. M. Изучение влияния пробитика ветом 1.1 на морфологические показатели крови цыплят-бройлеров / А. И. Шевченко, С. А. Шевченко // Вестник НГАУ. — 2015. — № 4. — С. 147–153. 25. Щепткина, С. В. Решение проблемы антибиотикорезистентности в условиях производства / С. В. Щепткина // Сельскохозяйственные вести. -2016. -№ 2. - C. 55–57. 26. Элементарный состав печени при многократном введении наночастии меди / Е. А. Сизова [и др.] // Микроэлементы в медицине. – 2011. – Т. 12, № 3/4. – С. 67–69. 27. Эпизоотология и инфекционные болезни : учебник для студентов и магистрантов учреждений высшего образования по специальности «Ветеринарная медицина» / В. В. *Максимович [и др.].* – 2-е изд. перераб. и доп. – Минск : ИВЦ Минфина, 2017. – 824 с. 28. Cytotoxic origin of copper (II) oxidenanoparticles: comparative studies with micron-sized particles, leachate, and metal salts / C. Gunawan [et al.] // ACSNano. – 2011. – Vol. 5. – P. 214–225. 29. Finding alternatives to antibiotics / H. K. Allen [et al.] // Ann. N. Y. Acad. Sci. – 2014. − № 1323. − P. 91–100. 30. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory / M. Vance [et al.] // Beilstein J. Nanotechnol. – 2015. – № 6. – P. 1769–1780. 31. Synthesis, Characterization, and Antimicrobial Activity of Copper Nanoparticles / A. Magusood [et al.] // Article ID 637858. -2014. $-\cancel{N}$ 34. -P. 4–15. 32. The WHO policy package to combat antimicrobial resistance // Bulletin of the World Health Organization. $-2011. - N_{2} 89. - P. 390-392.$ 33. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter? / R. Vazquez-Munoz [et al.] // Toxicology Letters. – 2017. – Vol. 276. – P. 11–20. 34. Woodford, N. Carbapenemase-producing Enterobacteriaceae and non Enterobacteriaceae from animals and the environment: an emerging public health rick of our own making? / N. Woodford // Journal of Antimicrobial Chemotherapy. -2014.-Vol. 69.-P. 287-291.

УДК 619:616.98:636.2-071

ЭФФЕКТИВНОСТЬ ВАКЦИН ПРОТИВ САЛЬМОНЕЛЛЕЗА ТЕЛЯТ

Красочко П.А., Яромчик Я.П., Синица Н.В., Дремач Г.Э., Бублов А.В. УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Введение. Внедрение интенсивных технологий в животноводстве требует строгого соблюдения ветеринарно-санитарных мероприятий по профилактике заболеваний сельскохозяйственных животных. На протяжении последних лет наблюдения к одним из основных причин непроизводительного выбытия молодняка крупного рогатого скота относят факторные болезни инфекционной этиологии [1, 5, 6, 8].

Согласно данных ряда исследователей значительный удел в общей этиологической структуре среди регистрируемых инфекционных болезней телят широкому сальмонеллез. Достаточно распространению занимает сельскохозяйственных животных инфекционной патологии сальмонеллоносительство, что обуславливает наличие источника возбудителя инфекции и тем самым приводит к контаминации окружающей среды. Бактерионосители представляют особую опасность и для людей при употреблении в пищу продуктов питания, полученных от животных-сальмонеллоносителей [2, 6, 8].

Одним из основных методов борьбы с сальмонеллезом молодняка крупного рогатого скота является проведение специфической профилактики сальмонеллеза телят. Иммунизация крупного рогатого скота против салльмонеллеза входит в перечень противоэпизоотических мероприятий практически во всех сельскохозяйственных организациях, занимающихся молочным и мясным скотоводством [1, 4-8].

Несмотря на выраженную патогенность значительного количества серовариантов сальмонелл, в большинстве случаев у крупного рогатого скота заболевание чаще всего вызывает — S.dublin, S.enteritidis и S.typhimurium [2, 3, 6].

В связи с этим, наличие этих наиболее часто выделяемых диагностическими ветеринарными учреждениями штаммов сальмонелл из патологического материала, отобранного от телят, обосновывает их включение в состав вакцин и выбор средств специфической профилактики сальмонеллеза молодняка крупного рогатого скота [1, 2, 4, 7].

Профилактическая эффективность биологических препаратов против сальмонеллеза животных зависит от иммуногенности применяемых средств специфической профилактики. Показатели эффективности противосальмонеллезных вакцин, при применении в условиях неблагополучных хозяйств, в большой степени зависят от совпадения этиологической структуры возбудителя болезни с антигенным спектром применяемых биопрепаратов [1, 4, 5].