Из кафедры разведения сельскохозяйственных животных

Зав. кафедрой профессор О. А. ИВАНОВА

ВЛИЯНИЕ ЛАКТАЦИИ НА ГАЗООБМЕН И ТЕПЛОПРОДУКЦИЮ, У ПЕРВОТЕЛОК, ВЫРАЩЕННЫХ НА РАЗЛИЧНЫХ ПО ТИПУ РАЦИОНАХ, И КОРОВ ХОЗЯЙСТВЕННОГО ВЫРАЩИВАНИЯ

Кандидат сельскохозяйственных наук А. С. ГУРЬЯНОВА

На обмен веществ и энергии в организме оказывают влияние не только многочисленные факторы внешней среды, но и физиологическое состояние самого организма, в частности—лактация.

По изучению этого вопроса имеется ряд работ, авторы которых приходят к выводу, что газообмен в период лактации повышается, но у разных животных по разному.

У крольчих, по данным M. Ф. Томмэ, очень сильно увеличиваєтся газообмен в первую половину лактации—на 43-46% по сравнению с покоем, затем он снижается до 23-25% в пересчете на килочас, а в третьем периоде разница была минимальной—всего лишь 5%.

Данные П. С. Попехиной подтверждают выводы М. Ф. Томмэ. В ее работе интересен факт, что внезапное прекращение лактации дает резкое снижение газообмена.

По Ritzman и Benedict у овцематок в зимний период обмен определяется в 33 кал. на килосутки, в начале лактации обмен повышается до 40—47 кал. Интенсивность газообмена, по данным А. К. Рослякова, А. Д. Евдокова и Е. П. Васенко, в первую треть лактации в два с лишним раза больше, чем у яловых.

У свиней основной обмен в период лактации значительно выше, чем в период супоросности и полового покоя (А. А. Кудрявцев и М. В. Кудряшов).

Washburn L. нашел теплопродукцию при голодании у лактирующей коровы на 20% выше, чем у сухостойной.

По Brody S. уровень обмена у лактирующих коров молочных пород (джерзейской, голштинской) был на 30—60%, а у мясных на 26—28% выше, чем у сухостойных коров. По данным А. А. Шилова газообмен у коров в период лактации был выше на 27%, по сравнению с сухостойным периодом.

А. А. Скворцова и П. Ф. Солдатенков наблюдали у коров резкое падение легочного газообмена в первые дни после отела. В процессе усиленного раздоя и кормления у коров интенсивность газообмена резко возрастала.

А. А. Кузмичев наблюдал, что газообмен у коров в первую половину лактации выше, чем во вторую. Так, выделение углекислоты в первую половину составляло 3,36 л., а во вторую половину — 3,095 л.

Следовательно, вопрос о влиянии лактации на обмен веществ давно интересовал исследователей. Однако, эти исследования были вы-

полнены или на лабораторных, или на мелких сельскохозяйственных животных. Кроме того, изучение газообмена в период лактации проводилось или в начале и в конце ее, или, в лучшем случае, в начале, средине и в конце лактации. По этим данным трудно установить динамику газообмена в течение лактации.

Изучение же этого вопроса имеет большое значение, так как характеристика физиологического состояния организма поможет более правильно решить проблему повышения продуктивности скота. Поэтому мы и поставили своей задачей — изучение у коров газообмена на протяжении всей лактации.

Для решения этой задачи мы подобрали (по принципу аналогов) две группы животных хозяйственного выращивания симментальской и красной тамбовской пород, по 9 голов в каждой группе.

Для выяснения вопроса, как повышается газообмен в период лактации, по сравнению с периодом до оплодотворения, мы использовали животных предыдущего опыта, в котором мы изучали влияние типа кормления растущих телок на газообмен и последующую молочную продуктивность (см. тезисы докладов научной конференции по совершенствованию продуктивных пород сельскохозяйственных животных, Рига, 1956 г., Латвийская сельскохозяйственная Академия), где было подобрано с самого рождения две группы животных, которые получали рационы с одинаковым уровнем питания, но с различным соотношением в них объемистых и концентрированных кормов.

I группа (5 голов красной тамбовской и 7 голов симментальской пород) получала рационы с большим удельным весом сочных и грубых кормов; II группа (по 6 голов той и другой породы) получала рацион с большим удельным весом концентрированных кормов.

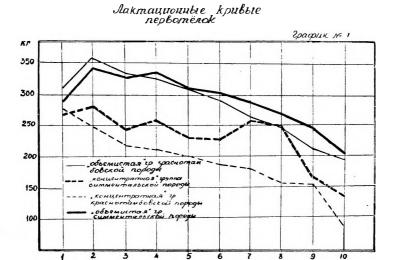
Кроме того, этих животных мы использовали для решения второй задачи: сохранятся ли те изменения, которые возникли в молодом возрасте под влиянием различных типов кормления, у взрослых животных, если в дальнейшем не действовать на организм этим кормовым фактором.

Для этой цели обе группы животных на 2 месяце лактации были переведены на обычное хозяйственное кормление. Этот перевод необходим был и для того, чтобы выяснить: повлиял ли различный тип кормления растущих телок на их последующую продуктивность при одинаковом кормлении во время лактации.

Условия ухода и содержания для всех подопытных животных были одинаковые.

Исследования по газообмену мы проводили в 3—4 часа утра до кормления в конце каждого месяца лактации. При проведении опытов использовали открытый масочный метод.

Молочная продуктивность у первотелок, в зависимости от типов кормления по месяцам лактации


В таблице № 1 мы приводим данные по надою молока, а для наглядности лактационные кривые этих жовотных, из которых мы видим, что животные объемистого кормления обоих пород имели значительно более высокий удой, по сравнению с животными концентратного кормления. Так, удой за 300 дней лактации по «объемистой» группе красной тамбовской породы составляет 2799,5 кг, а по «концентратной» группе всего лишь 1878,4 кг. Следовательно, удой I группы, по сравнению со второй, выше на 49%.

Животные объемистого типа кормления симментальской породы имели удой за 300 дней лактации в среднем по группе 2898,4 кг, животные концентратного типа кормления — 2280,3 кг или удой 1-й группы, по сравнению со II, выше на 27,1%.

Таблица № 1

Продуктивность подопытных животных за 300 дней лактации (по месяцам лактации)

	Группы		Месяны лактации								го за дясй укороч ац.	2 %		NE SE	
	кармления	ı	11	111	ıv	v	VI	VII	VIII	ιx	x	Hioro 300 дя нам ук лактац	Orth OT 1	Жиры гр.100	Молочи жкры за лактацию
							Кр	асная там	бовская п	прода					
	Среднее по группе объемистого кормле- ния	313	358	335,6	3 27,0	309,5	292,6	266,3	250,1	215,0	199,6	2799,5	149%	3,97	110,8
	Среднее по группе ксип кармления	278	248	220,5	213,4	202,0	190,6		161,6 льская по	157.5	89,0	1818,4	100 %	4,25	77,8
	Среднее по группе объемистого карм- ления	295,3	345,5	328, 3	335,6	3 10,6	304,4	292	27.3 ,5	252,4	210,5	2898,4	127.1	3.82	110,4
213	Среднее по группе конц. кормя, и др	270,3	284	246	259,0	2 34,0	23 3,2	259,8	251,2	170,0	142,4	2280, 3	100	3,96	90,2

месяцы лактации

	54.2	й хесяц гельности 24 месяца	A = (E)			Меся	пи ча	ктац)	и	,	
	До оп тисре нозра	1-й хесяц стельности в 24 месяці	I SEE	2 февр.	3 март	4 anp	5 ° май	6 июнь	у вюль	8 *автуст	9 сентя б ря
Вентиляция легких	54.2	60,0	87	7 2 ,6	84,2	95,5	98,9	95,0	93,6	95.9	87.4
Потребя. О _о на килочас в л.	0,284	.9,278	0.305	0, 349	0, 337	0. 363	0, 358	0,357	0, 356	0, 333	0.326
Выделение СО ₂ на килочас в литрах	0.239	0,198	0.265	0,297	0,249	0,272	0,275	0, 304	0,296	0, 308	0,293
Теплопродукция на килосутки в б. к.	33,1	31,2	35,8	40,8	38.3	41,3	40,9	41,7	40.4	39,6	38,5
Удой за месяц в лит- рах	_	_	352,7	406,0	3 51,6	428	462,5	424	424	370	325

Газообмен и теплопродукция у первотелок в период лактации в среднем по группам (по животным красной тамбояской породы)

	•									
	До по		М	E C 9	цы	ЛА	КТА	ции	1	
	крытия	1	ш	Ш	IV	v	VΙ	VII	VIII	١x
				Группы	объвмисто	го типа к	ормления			
1. Частота пульса в 1 мин.		66	64,3	66,6	66,6	65,0	64,8	60,0	60,0	58.0
2. Число дыханий в 1 мин.		25,3	23,7	25.0	26.0	27.0	28,0	25	26	24
3. Вентиляция легких на 1 кг живого веса		0,134	0.145	0,153	0,147	0,150	0,140	0,138	0,150	0,147
4. Потребление O ₂ на килочас в л.	0.289	0.324	0,353	0,350	0,368	0,369	0,339	0,331	0,432	9,316
 Выделение СО₂ на килочас в л. 	0.274	0.266	0,321	0,306	0,296	0, 309	0.291	0.293	0,305	0,283
5. Теплопродукция на килосутки в б. к.	34,0	35,9	42.4	41,9	42,2	42,2	39,6	38,5	39,3	37,1
Емкость вдоха в литр.	l	2,727	3.259	3,252	3,130	2,999	2,682	2,920	3,048	3,312
	!	i		Группа ко	нцентрати	ого типа	кормления	ı		l
1. Частота пульса в 1 мин.		63	61,0	65.0	63,0	64,0	65,0	62,0	65	61.7
2. Число дыханий в 1 мин.		22,3	21,0	22,0	24,0	25,0	27,0	26,5	26,0	24,0
3. Вентиляция легких на 1 кг живога веса в д.		0,111	0,113	0,116	0,110	0,119	0,115	0.113	0,112	0,114
4. Потребление О2 на килочас в л.	0.240	0.287	0,285	0,290	0,288	0,290	€,289	0, 279	0,274	0.283
5. Выделение CO ₂ на килочас в литрах	0,204	0,232	0,242	0,235	0.247	0,249	0,251	0,231	0,219	0,228
6. Теплопролукция на килосутки в б. к.	28	33,4	33,3	34,0	34.4	34.0	34,0	32,8	35.0	32,8
Емкость вдоха в литрах		2,727	2,936	2,927	2,570	2,680	2.437 •	2,449	2,484	2.78
		1		I	1	ł			l	Į.

Таким образом, можно сделать вывод, что рацион с содержанием большого количества грубых и сочных кормов при выращивании способствует получению более высоких удоев, чем рацион с содержанием большого количества концентрированных кормов (влияние наследственности учитывалось).

Пульс, дыхание, легочный газообмен и теплопродукция в период лактации

Наши подопытные животные, которые выращивались на различных по типу рационах, отелились в разные сезоны года и поэтому средние данные у этих животных не представляют такого интереса, как индивидуальные данные.

У большинства этих животных обнаружена связь газообмена с деятельностью молочной железы. При повышении удоя почти во всех случаях наблюдалось повышение газообмена, и если были отклонения, то они связаны с влиянием сезона года.

Для примера приведем данные первотелки «Бурливой» (таблица № 2).

При повышении удоя — увеличивается и интенсивность газообмена, при дальнейшем снижении удоя — снижается и газообмен. Несовпадение имело место только в июне месяце, когда удой снижался, но снижения газообмена не наблюдалось. Это мы объясняем влиянием сезона года.

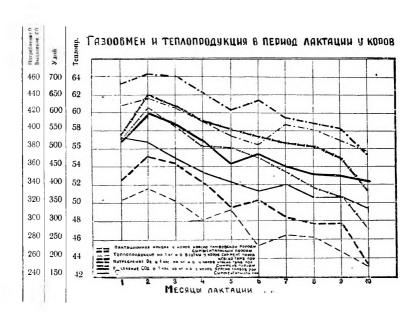
У большинства подопытных животных газообмен летом (в пастбищный период, особенно в мае, июне и частично июле) выше, чем в стойловый период. Это повышение связано с улучшением качества питания и с увеличением об'ема рациона, а также с выполняемой мышечной работой (движение на пастбище) и, до некоторой степени, с влиянием солнечной радиации, то есть обусловлено всем сложным комплексом условий внешней среды, действующих как в данный момент, так и закрепленных в форме временных связей.

Как мы уже отметили, в период лактации наши подопытные животные получали одинаковые по структуре рационы, но, несмотря на это, изменения в организме, которые возникли в раннем возрасте под влиянием различных типов кормления, сохранились и у взрослых животных даже тогда, когда прекращается воздействие на организм этого фактора.

Так, у первотелок красной тамбовской породы (таблица № 3) на 9 месяце лактации разница по потреблению кислорода между животными разных групп составляет 11.6%, по выделению CO_2 — 8.5%, по теплопролукции — 10%.

Данные таблицы № 3 также показывают увеличение уровня газообмена в период лактации по сравнению с периодом сухостоя.

Так, животные на первом месяце лактации, по сравнению с периодом покоя, имеют газообмен выше на 10-20%.


Такого большого повышения интенсивности газообмена в период лактации, как это было получено у Brody (30—60%), в нашем опыте не было. Это связано с тем, что Brody проводил опыты на животных, закончивших свой рост, а мы проводили опыт на растущих животных, у которых с возрастом интенсивность обменных процессов снижается.

Видимо, для растущих животных такое повышение газообмена, связанное с влиянием лактации, вполне закономерное явление.

Таблица № 4

Пульс, лыхание, легочный газообмен и теплопродукция в период лактации у коров хозяйственного выращива													
	Dyase	THYSUNG	тегопрый	газообмен	и :	теплопполукция	я	периоз	лактации	V F	RODOS	хозяйственного	выращивая

	Месяцы лактации										
	1	11	111	IV	v	VI	VII	VIII	IX	х	
		Красная тамбовская порода									
. Число дыханий в 1 мин.	31,0	0,08	29,5	27,0	26.5	25,0	27.5	26,0	27.5	27	
2. Пульс в 1 минуту	74	71	76	68	66	68	67	64	66	65	
3. Вентиляция легких на 1 кг ж. в. в литрах	0,190	0,190	0,178	0.171	0,163	0,176	0,173	0,175	0,167	0.170	
4. Потребление 0 ₂ на килочас в литрах	0,451	0,465	0,462	0.443	0,424	0.432	0,415	0,409	0,404	0,374	
5. Теплопродукция на килосутки в б. к.	5 3 .2	55,1	54.4	52,3	49.6	50.4	48,6	47,8	47,6	43,7	
6, Удон по месяцам лактац.	524,3	623,8	565,0	510.2	502.0	478,0	441,3	391,0	317,2	183,0	
7. Выделение СО $_2$ на килочас в литрах	0,383	0,420	0,407	0,390	0,365	0,373	0,359	0,352	0,350	0,34	
			_ c	имментал	ьская пор	ода					
1. Число дыханий в 1 мин.	28	28	26,2	25	28	26,0	27,0	26,0	25.5	25,0	
2. Пульс в 1 мин.	66	68	67	64	67,5	62	63,5	61,5	62	60,5	
3. Вентиляция легких на 1 кг ж. весавлитр.	0,164	0,165	0,159	0,153	0,150	0.139	0.153	0,163	0,156	0,14	
4. Потребление О, на килочас в литрах	0,425	0.437	0,427	0,410	0,394	0,385	0,409	0,402	0,389	0,37	
5. Теплопродукция на килосутки в б. к.	50,3	51.7	50,2	48.1	49,4	45.1	46,4	46,2	45,2	43,	
6. Удон по месяцам лактации	541.2	650.2	624,0	575,3	655,0	541,0	522,3	514,0	475,3	383	
7. Выделение CO ₂ на килочас в литрах	0,391	0,389	0,370	0,354	0,342	0,335	0,340	0,327	0,329	0,31	

Для получения дополнительных материалов по влиянию лактации на газообмен мы подобрали еще 2 группы лактирующих животных (хозяйственного вырашивания) красной тамбовской и симментальской пород по 9 голов в каждой группе. Животные в группы подбирались по принципу аналогов. Легочный газообмен мы определяли с начала и до конца лактации ежемесячно. При этом ставили своей задачей проследить, как изменяется газообмен с ходом лактации.

Результаты исследования приводим в таблице № 4 и графике № 2. Приведенные в таблице данные показывают, что ход газообмена с течением лактации очень напоминает ход лактационной кривой.

Заслуживает упоминания тот факт, что у животных красной тамбовской породы лактационная кривая падает круче, чем у животных симментальской породы. У этих же животных и уровень газообмена снижается на большую величину, чем у животных симментальской породы (по сравнению с первым месяцем лактации).

Самые высокие показатели интенсивности газообмена падают на второй месяц лактации, то есть на период наивысшего раздоя. В первую половину лактации он выше, чем во вторую.

Столь значительное повышение интенсивности газообмена в период лактации некоторые авторы (М. И. Дьяков, М. Ф. Томмэ, Попехина и др.) об'ясняют усиленной деятельностью молочной железы в этот период, гормональным воздействием и повышенным уровнем питания. Но некоторые авторы (S. Brody, Скворцова) склонны объяснить повышение газообмена в период лактации не усилением деятельности молочной железы, то есть не процессом лактации, как таковым, а за счет усиленного потребления корма.

Нам кажется, более правильным объяснением будет то, которое учитывает не один фактор, оказывающий влияние на обмен в этот период, а взаимодействие всех факторов, связанных с молокообразованием, а именно:

- а) усиление деятельности в этот период молочной железы;
- б) повышению газообмена способствуют и гормональные воздействия:
- в) увеличенное потребление корма в этот период также значительно повышает обмен веществ;
- г) безусловно, большое значение имеет нервная система, которая является регулятором общего обмена веществ в организме.

Необходимо отметить, что интенсивность газообмена у животных симментальской породы идет на более низком уровне по сравнению с животными красной тамбовской породы. Видимо, это связано с тем, что животные симментальской породы менее подвижны и более крупные.

Проведенные нами исследования по газообмену у лактирующих животных позволяют сделать следующие выводы:

- 1. Лактация оказывает существенное влияние на интенсивность легочного газообмена и теплопродукцию.
- 2. Уровень газообмена и теплопродукции в период лактации у первотелок выше на 10-20%, чем в период до оплодотворения.
- 3. С понижением удоя снижается интенсивность легочного газообмена и теплопродукции. Кривые выделения углекислоты, потребления кислорода и теплопродукции по своему характеру напоминают лактационную кривую.

Самые высокие величины легочного газообмена и теплопродукции падают на 2-й месяц лактации, то есть в момент наибольшего раздоя.

4. Снижение интенсивности легочного газообмена и теплопродукции к концу лактации не пропорционально снижению уровня удоя.

5. На газообмен и теплопродукцию в период лактации оказывают влияние температура внешней среды и сезон года.

Газообмен и теплопродукция в пастбищный период выше, чем в стойловый.

6. Разница в интенсивности легочного газообмена и теплопродукции, которая возникла у животных под влиянием различных типов кормления в молодом возрасте, сохраняется и в период лактации. Следовательно, изменения, возникающие под влиянием различных факторов кормления в раннем возрасте, устойчивы и сохраняются до взрослого состояния, даже в том случае, если в последующем уже нет тех факторов воздействия, под влиянием которых впервые возникли эти изменения.