Влияние ванадия на содержание аскорбиновой и нейраминовой кислот в организме кроликов

Ф. Я. БЕРЕНШТЕЙН, М. М. КИЧИНА

За последние годы появилось ряд сообщений, свидетельствующих о том, что ванадий играет определенную роль в физиологических процессах, происходящих в организме млекопитающих животных.

Так, установлено участие ванадия в процессе минерализации костей и зубов (Насон, 1962; Скоблин, Белоус, 1968; Белехова, 1966 и др.), его стимулирующее действие на рост и кроветворение (Seeleman, Baudissin, 1954; Войнар 1960), воздействие на некоторые стороны липидного и углеводного обменов (Корхов, 1962; Лисункин, 1965; Ирген и Лея, 1967; Беренштейн, Ермолаев, 1969, и др.).

В настоящей работе изучали влияние ванадия на содержание аскорбиновой и нейраминовой кислот в организме кроликов.

Проведены исследования на 21 взрослом кролике. В течение 1,5 месяца все кролики получали одинаковый рацион, в котором содержалось 37 мкг ванадия в сутки, по истечении подготовительного периода кроликов распределили на 3 равные группы: І — (контрольная), ІІ— кролики получали дополнительно к основному рациону ежедневно ванадилсульфат в дозе, соответствующей 0,05 мг ванадия на 1 кг веса, ІІІ — кроликам вводили подкожно ванадилсульфат в такой же дозе. Основной период продолжался в течение 3 месяцев.

В течение подготовительного периода кровь исследовали на содержание нейраминовой и аскорбиновой кислот 5 раз, а в основной период 8 раз. По окончании опыта кроликов убили путем кровопускания, а органы и ткани исследовали на содержание в них аскорбиновой и нейраминовых кислот.

Определяли аскорбиновую кислоту в крови по методу Эйдельмана и Гордона, в органах и тканях — по методу,

описанному Бременер и др. Нейраминовую кислоту определяли по методу Р. Böhm, S. Dauber, L. Baumeister в 0,05 мл сыворотки и выражали в миллиграмм процентах.

Для определения содержания нейраминовой кислоты в органах навеску ткани (0,5—1 г) растирали в ступке с 7 мл 5%-ного раствора трихлоруксусной кислоты. Полученную кашицу 20 мин. гидролизировали в кипящей кодяной бане, затем тщательно перемешивали и центрифугировали.

К 2 мл гидролизата добавляли 2 мл реактива Биаля, нагревали и после извлечения нейраминовой кислоты амиловым спиртом колориметрировали. Остаток ткани после гидролиза обрабатывали 10 мл 96°-ного спирта на холоду, таким же объемом спиртово-эфирной смеси (3:1) на холоду и при нагревании. Содержание нейраминовой юислоты в органах выражали в миллиграммпроцентах в расчете на сухую обезжиренную ткань.

Нейраминовую кислоту определяли в приборе ФЭК-М, использовав для приготовления калибровочной кривой чистую ацетилнейраминовую кислоту фирмы Koch-Light (Англия), основной раствор которой содержал 100 γ в 1 мл.

В табл. 1 и 2 приведены средние данные о содержании аскорбиновой кислоты в крови и органах кроликов. Как видно из приведенных в табл. 1 и 2 данных:

1. Содержание аскорбиновой кислоты в крови кроликов всех групп в основной период было более низким, чем в подготовительный период. Однако существенной разницы в содержании витамина С в крови между контрольными животными и опытными отметить не удалось. Это позволяет сделать заключение, что как подкожные продолжительные инъекции, так и подкормка ванадил-

 $\it Taблица~1$ Содержание аскорбиновой кислоты в крови кроликов, $\it mz\%$

Характеристика групп	Подготовитель- ный период	Основной период
Контрольная	1,42	1,25
Кролики, получавшие подкормку ванадилсульфата	1,55	1,25
Кролики, получавшие подкожные инъекции ванадилсульфата	1,46	1,29

. Tаблица 2 Содержание аскорбиновой кислоты в органах кроликов, ме %

Название органа	Контрольные животные	Кролики, получавшие подкормку ванадилсульфата	Кролики, получавшие подкожные инъекции вянадилсульфята
Мышцы	1,20	1,82	2,22
Сердце	4.43	4,72	4,83
Печень	18.74	21,92	19,56
Почки	9.32	10.68	10.48
Надпочечники	210.0	202,6	219,3
Легкие	23,81	24.60	25,81
Поджелудочная желе-	,	'	1
3a	9,76	7,98	9,74
Глаз	14,23	13,19	13,40
Большие полушария	· '	,	,
мозга	18,98	19,08	22,75

сульфатом не оказывают определенного влияния на содержание аскорбиновой кислоты в крови.

2. При добавлении к рациону ванадилсульфата в дозе, соответствующей 0,05 мг ванадия на 1 кг веса, наблюдается статистически достоверное увеличение содержания аскорбиновой кислоты в мышцах, почках и печени, а при подкожных инъекциях — в мышцах, почках и больших полушариях мозга; в поджелудочной железе в результате подкормки ванадилсульфатом содержание аскорбиновой кислоты снижалось в среднем на 18,24% (F°=6,36>>F0,05=4,75).

В остальных исследованных органах количество аскорбиновой кислоты оставалось без существенных изменений.

В табл. 3—4 приведены средние данные о влиянии ванадия на содержание нейраминовой кислоты в крови и органах кроликов.

T аблица 3 Содержание нейраминовой кислоты в крови кроликов, мг %

Группы	Подготовитель- ный период	Основной период
Контрольная	58,91	68,65
Кролики, получавшие подкормку ванадилсульфата	61,9	64,8
Кролики, получавшие инъекции ванадилсульфата	57,62	76,3

Таблица 4 Содержание нейраминовой кислоты в органах кроликов на абсолютно сухую обезжиренную ткань, мг %

Органы	Контрольные животные	Кролики, получаншие подкормку нападилсульфата	Кролики, по- лучавшие инъ- екции ванадил- сульфата
Печень	1515,5	1903,0	1830,8
	883,7	855,7	894,0
	1599,0	1721,7	1814,3
	1088,8	1025,5	843,8
	1260,4	1124,4	886,6
	1246,0	1435,4	1367,0
	1113,0	1154,0	1057,4
	616,5	568,4	582,8
	393,7	393,3	376,6

Из приведенных в табл. 3 ч 4 данных можно сделать следующие заключения: у нормальных кроликов максимальное количество нейраминовой кислоты содержится в печени и надпочечниках, минимальное — в крови; мало нейраминовой кислоты в спинном и продолговатом мозгу. Содержание нейраминовой кислоты в сыворотке крови кроликов в течение основного периода было большим, чем в подготовительный период. У кроликов, получавших подкожные инъекции ванадилсульфата, это увеличение оказалось более существенным, чем у контрольных, а у животных, получавших добавление к рациону этого микроэлемента, наоборот, - менее выраженным. Разница между опытными группами и контрольной оказалась статистически достоверной. Подкожные инъекции ванадилсульфата вызвали достоверное уменьшение содержания нейраминовой кислоты в желудке и аорте, а подкормка (достоверно) увеличивала содержание ее в тонком кишечнике и печени.

Выводы

1. В результате добавления кроликам к рациону ванадилсульфата в дозе 0,05 мг/кг в расчете на ванадий в течение трех месяцев наблюдалось увеличение содержания аскорбиновой кислоты в мышцах, почках и печени и нейраминовой кислоты в печени и тонком кишечнике; со-

держание нейраминовой кислоты в крови и аскорбиновой кислоты в поджелудочной железе при этом уменьшалось.

2. Подкожные инъекции ванадилсульфата в той же дозе способствовали увеличению ксличества аскорбиновой кислоты в мышцах, почках и больших полушариях мозга и нейраминовой кислоты в сыворотке крови; содержание нейраминовой кислоты в желудке и аорте при этом уменьшается.

Содержание общего белка, белковых фракций и активность некоторых ферментов в крови кроликов при введении селената калия

А. В. КОРНЕЙКО, В. Н. НИКАНДРОВ

Селен — биологически активный элемент, сказывает существенное влияние на процессы жизнедеятельности в организме животных. Данные, приведенные в литературе, свидетельствуют о том, что селен участвует в обмене белков, витаминов, действует на активность некоторых тканевых ферментов.

При введении селена в дозах 0,05 и 0,1 мг на 1 кг сеса повышается содержание общего белка и изменяется белковый коэффициент в сыворотке крови у цыплят (Rahman, 1960). В крови кроликов через 3 часа после введения 0,05 мг/кг селенита натрия (в расчете на селен) снижается количество общего белка, а через 6 часов — уровень альбуминов. Количество а и β-глобулинов, наоборот, возрастает (С. Ф. Алешко, 1966). Селен оказывает влияние на активность ферментов, дегидрирующих продукты углеводного обмена (Klug и др.