ОПРЕДЕЛЕНИЕ БЕЛКОВЫХ ФРАКЦИЙ СЫВОРОТКИ КРОВИ У КРУПНОГО РОГАТОГО СКОТА УСКОРЕННЫМ МЕТОДОМ

А. П. ГЕРВЕТОВСКИЙ, В. А. СИНКЕВИЧ, Н. Л. СТРЕЛЬЦОВА

В последние годы много внимания уделяется изучению белкового состава крови сельскохозяйственных животных. Вызвано это тем, что, будучи составной частью протоплазмы клеток и тканей, они в процессе белкового обмена преобразуются в ферменты, гормоны, иммунные тела и другие биологически важные соединения. Все более широкое изучение белковых фракций крови проводится и в клинической практике. Это и понятно, так как знание изменений в белковом составе крови важно не только для установления диагноза, но и для прогноза при целом ряде заболеваний.

Наиболее распространено исследование белков и белковых фракций электрофоретическим методом. Этот метод достаточно точен, но требует специальной аппаратуры, больших количеств буферного раствора, хроматографической бумаги и длительного времени на обработку фореграмм, что ограничивает его применение в повседневной клинической практике, особенно при массовых исследованиях.

Исходя из потребностей клинической практики, мы поставили задачу использовать простой, но достаточно точный и быстрый метод определения белковых фракций сыворотки крови, предложенный Оллом и Маккардом и модифицированный Карпюком.

Этот метод основан на свойстве фосфатных растворов осаждать белки. Для определения белковых фракций сыворотки крови ускоренным методом готовят основной фосфатный раствор следующим образом. К 400 мл раствора, содержащего 33,5 г едкого натра, добавляют 226,8 г однозамещенного фосфорнокислого калия. После полного растворения и охлаждения до ком-

натной температуры объем раствора доводят дистиллированной водой до 500 мл, или до 667,5 г. Затем из основного раствора готовят четыре рабочих раствора. Чтобы приготовить рабочие растворы, точно указанное в табл. 1 количество основного раствора доводят дистиллированной водой до 100 мл и тщательно смешивают.

Таблица 1 Составление рабочих растворов из основного раствора однозамещенного фосфорновислого калия

Номер раствора	Требуется в мл		
	основного фосфатного раствора	дистиллированной воды	
1	92,6	7,4	
2	75,0	25,0	
3	58,8	41,2	
4	48,7	51,3	

При необходимости длительного хранения разведенных растворов с целью предупреждения бактериального загрязнения на 100 мл раствора добавляют одну каплю хлороформа.

Пробирки емкостью 10—15 мл, пронумерованные цифрами от нуля до 5, устанавливают в штатив. В пробирку № 0 вносят 10 мл дистиллированной воды, в пробирки № 1, 2, 3, 4 по 5 мл фосфатного раствора соответствующего номера. В пробирку № 5 вносят 0,5 мл исследуемой сыворотки крови, 0,75 мл дистиллированной воды и 3,75 мл основного фосфатного раствора. После тщательного перемешивания содержимое пробирки № 5 по 0,5 мл переносят градуированной пипеткой в пробирки № 1, 2, 3, 4, а в пробирку № 0 добавляют 1 мл. Содержимое каждой пробирки тщательно перемешивают. Через 15 мин. определяют оптическую плотность растворов пробирок 1—4 на фотоэлектроколориметре ФЭК-М.

Фотометрируют в кюветах шириной 10 мм, при красном светофильтре. Оптическую плотность измеряют по шкале левого барабана. Контролем служит содержимое пробирки № 0.

После измерения оптической плотности содержимого пробирок № 1, 2, 3 и 4 делают следующий расчет. Из оптической плотности содержимого пробирки № 1 вычитают оптическую плотность содержимого пробирки № 2.

Разность будет равна количеству альбуминов сыворотки крови. Таким же образом из оптической плотности содержимого пробирки № 2 вычитают оптическую плотность содержимого пробирки № 3. Разность будет показателем количества альфа-глобулинов. Из оптической плотности содержимого пробирки № 3 вычитают оптическую плотность содержимого пробирки № 4; разность — содержание бета-глобулинов. Оптическая плотность содержимого пробирки № 4 будет равна оптической плотности гамма-глобулинов. Принимая сумму оптических плотностей альбуминов и всех глобулиновых фракций за 100, вычисляют содержание каждой фракции в процентах (табл. 2).

Таблица 2 Форма расчета белковых фракций из показаний оптической плотности в относительных процентах

Номер пробирки	Оптическая плотность	Разность опти- ческой плот- ности	Относительный	Фракция белка
1 2 3 4	0,610 0,322 0,257 0,110	0,288 0,065 0,147 0,110	47,2 10,7 24,1 18,0	альбумины α—глобулины β—глобулины γ—глобулины
Сумы	1a	0,610	100,0	

Ускоренным методом нами проведено 155 исследований сывороток крови от 133 голов крупного рогатого скота (32 от клинически здоровых животных и 101 от волов-продуцентов лечебных сывороток).

При анализе данных табл. З видно, что как в период гипериммунизации, так и в разные периоды эксплуатации продуцентов в организме животных отмечаются определенные изменения в состоянии белкового обмена. Так, если у группы волов (32 головы) в период карантина альбумины составляли 51,8%, то в середине цикла гипериммунизации количество альбуминов уменьшилось на 28,4%. Уменьшилось также содержание альфа-глобулинов, при заметном увеличении процента бета- и гамма-фракции (9,9 и 26,6). Отчетливая закономерность в изменении альбуминов и глобулинов наблюдается и при исследовании крови продуцентов разных сроков эксплуатации.

Таблица 3

Содержание белковых фракций в сыворотке крови здоровых животных и волов-продуцентов лечебных сывороток в относительных процентах

	Коли- чество голоя	Альбу- мины	Глобулины		
Группа животных			α	β	۲
Клинически здоровые	32	51,8	8,2	19,8	20,2
иммунизации	32	23,4	4,1	29,7	42,8
Продуценты противорожистые. Эксплуатация с 1962 г	9	34,8	3,5	27,1	34,6
Продуценты противорожистые разного срока эксплуатации	66	30,8	10,2	19,3	40,2
Продуценты противопаратифозные. Эксплуатация с 1962 г	16	26,8	7,5	27,3	38,4

Таким образом, результаты исследований дают основание считать, что ускоренный метод определения белковых фракций довольно точно выявляет иммунобиологическое состояние организма животного, особую роль в котором играют глобулины.

Наши исследования дают основание считать, что ускоренный метод может использоваться в клинической практике как для уточнения тяжести заболевания, так и для контроля за эффективностью терапевтического вмешательства. Особенно широко представляется возможность использовать ускоренный метод при массовых исследованиях, диспансеризации, гипериммунизации и эксплуатации продуцентов лечебных сывороток.

ЛИТЕРАТУРА

Балаховский С. Д., Балаховский И. С. Методы химического анализа крови. М., Медгиз, 1953.

Бабич М. А., Плотникова В. А., Казак Н. А. Вы-деление иммуноактивных фракции из сывороток. Тр. ГНКИ вете-ринарных препаратов, т. X, 1962.

Волкова М. А. О стабильности белков сыворотки крови лошадей-продуцентов антитоксических сывороток. Ж. микробиологии,

эпидемиологии и иммунологии, вып. І, 1950.

Гапонов Н. Н. Общий белок и белковые фракции сыворотки крови у здоровых и больных диспепсией новорожденных телят. Тр. МВА, т. XXXVII, 1961. Вардосанидзе Д. Г. Белки и основные показатели белко-

вого обмена в крови у буйволов, коров, лошадей, овец и свиней в норме и при некоторых заболеваниях. Автореф. доктор. дисс. Казань, 1963.

Карпюк С. А. Определение белковых фракций сыворотки

крови экспрес-методом. «Лабораторное дело», 1962, № 7.

Лоншаков Г. А. Электрофоретическое исследование сыворотки волов-продуцентов в процессе гипериммунизации и эксплуатации против рожи свиней. Мат-лы докл. Всесоюзн. науч. конференции, посвященной 90-летию Казанского вет. ин-та. Казань. 1963.

Нагурский Ф. Динамика белков сыворотки крови крупного рогатого скота в онтогенезе с учетом некоторых физиологических и патологических факторов. Автореф. доктор. дисс. М., 1962.

Полянский В. В. Белковые фракции сыворотки яремных и молочных вен крупного рогатого скота. Тр. MBA, т. XXXVII.

Попов А. В. Электрофоретическое изучение белкового спектора сыворотки крови при экспериментальном пироплазмозе круп-

ного рогатого скота. Автореф. канд. дисс. Л., 1960.

Солодянкин А. Н. К вопросу о содержании общего белка и белковых фракций в сыворотке у коров различных возрастов. Мат-лы докл. Всесоюзн. науч. конференции, посвященной 90-летию Казанского вет. ин-та. Казань, 1963.