nopman Республики Беларусь, 24.03.2018,1/17607. — Режим доступа: http://extwprlegs1.fao.org/docs/pdf/blr175278.pdf . — Дата доступа: 01.02.2021.

УДК: 633.2/4: 615.

ДУБИНКА А. А., студент; ПИСАРЕВА Д. Д., студент

Научные руководители - Синцерова А. М., канд. с.-х. наук, доцент;

Зенькова Н. Н., канд. с.-х. наук, доцент

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины, г. Витебск, Республика Беларуси

КАЧЕСТВЕННЫЙ СОСТАВ СИЛОСОВ ИЗ АФРИКАНСКОГО ПРОСА

Ведение. Успешное развитие животноводства - одно из основных направлений развития агропромышленного комплекса Республики Беларусь. Помимо создания животноводческих ферм, приобретения высокопродуктивного скота — важнейшим фактором успешной реализации поставленных задач является наличие прочной кормовой базы [1,4].

Особое место в кормопроизводстве в условиях ограниченного орошаемого земледелия может занять африканское просо (Pennisetumglaucum R.Br.) — мало изученная кормовая культура с уникальными хозяйственно-биологическими свойствами и большим потенциалом продуктивности зеленой биомассы и зерна. Данная культура в Республике Беларусь возделывается впервые [2,3,5].

Материалы и методы исследований. В лабораторных опытах были заложены партии силоса из африканского просос использованием биологического консерванта «Лактофлор фермент Премиум». Скошенную зеленую массу измельчали на соломорезке до размера частиц 3-6 сантиметров, после чего измельченную массу закладывали в стеклянные трехлитровые банки в трехкратной повторности с одновременной трамбовкой. Заполненные зеленой массой банки закрывали специальными резиновыми крышками и запечатали парафином. 1 вариант — без консерванта; 2 вариант с использованием консерванта «Лактофлор фермент Премиум». По истечении двух месяцев хранения были проведены исследования по изучению химического состава силосов.

Целью исследований являлось изучение качественного состава силосов из африканского проса

Результаты исследований. Для управления процессом силосования важное значение имеет величина активной кислотности среды силосуемого корма, зависящая от величины концентрации водород-

ных ионов. Источником ионов водорода служат органические кислоты, образующиеся при брожении в силосуемой массе. Молочнокислое брожение предпочтительнее, потому что молочная кислота для своего образования требует значительно меньше сахара и обладает более сильными консервирующими свойствами, чем уксусная.

Зеленая масса африканского просо является хорошо силосуемой культурой, однако применение биологического консерванта «Лактофолор фермент Премиум» понизило содержание рН до значения 4,0 и способствовало преобладанию молочнокислого брожения, о чем свидетельствует соотношение кислот, в то время как силос из африканского проса заготовленный без консерванта рН 4,4 (таблица 1).

Таблица 1 - Соотношение органических кислот в силосе

Корма	рН	Соотношение кислот, %			
		Молочная	Уксусная	Масляная	
Силос (без консерванта)	4,4	89,69	10,31	-	
Силос (с консервантом)	4,0	91,84	8,16	-	

По содержанию молочной кислоты в сумме кислот силоса, заготовленный с применением консерванта, превосходил силос из африканского просо заготовленного без консерванта на 2,4 % или 2,15 п.п. Масляная кислота во всех силосах отсутствовала.

Данные химического состава и питательной ценности силосов из африканского проса представлены в таблице 2.

Таблица 2 - Химический состав кормов в 1 кг натурального корма

Показатели	Силос (без консерванта)	Силос (с консервантом)		
Сухое вещество, кг	0,21	0,22		
Сырой протеин, г	29,61	31,23		
Сырой жир, г	6,94	7,40		
Сырая клетчатка, г	56,15	60,02		
Сырая зола, г	13,62	18,37		
Каротин, мг	34,0	37,0		
Кальций, г	0,82	0,88		
Фосфор, г	0,11	0,13		
Корм.ед.	0,17	0,18		
Обменная энергия, МДж	1,90	2,04		

Из данных таблицы 2 видно, что использование биологического консерванта при силосовании африканского просо позволило снизить потери: сухого вещества на 4,8%, сырого протеина на 5,6%, каротина на 8,8%. Энергетическая питательность силоса, приготовленный с консервантом, была выше на 0,01 кормовые единицы, или на 0,14 МДж обменной энергии, что свидетельствует о высоком качестве

корма. Консервирование африканского проса с биологическим консервантом позволило повысить содержание в силосе минеральных элементов: кальция на 7,3%, фосфора на 18,2%.

Изучая химический состав полученных силосов (таблица 3) можно отметить, что содержание сухого вещества силосов из африканского просо находилось на уровне 21,0-22,0 %. Внесение биологического консерванта в силосуемую массу из африканского просо понизило содержание клетчатки на 10,7 % в 1 кг сухого вещества за счет повышения сохранности протеина и жира.

Таблица 3 - Химический состав кормов (на 1 кг сухого вещества)

Наименование корма	ОЭ, МДж	К. ед.	СП, %	СК, %	C3, %
Силос (без консерванта)	9,07	0,80	14,10	28,58	8,75
Силос (с консервантом)	9,25	0,81	14,20	25,52	6,19

По концентрации сырого протеина корма, заготовленного с использованием биологического консерванта, превосходил силос из африканского просо заготовленный без консерванта на 0,71%. Увеличение содержания протеина в силосе, заготовленного с консервантом, явилось следствием протекания биохимических процессов в силосуемой массе по принципу гомоферментативного брожения, что негативно сказалось на жизнидеятельностиаминотрофов, а также других возбудителей нежелательного брожения. Следствием этого явилось сокращение созревания силоса и соответственно потерь протеина в процессе хранения.

Расчеты энергетической питательности показали, что питательная ценность силоса из африканского проса, заготовленного с применением консерванта была выше. Так, по содержанию обменной энергии в сухом веществе разница между опытом и контролем составила 1,98%. Аналогичная тенденция проявилась и по содержанию кормовых единиц в сухом веществе.

Заключение. С целью сокращения потерь сухого вещества, улучшения качества и снижения себестоимости кормовых единиц при заготовке силоса из африканского проса рекомендуем применять биологический консервант «Лактофлорфермент Премиум».

Литература. 1. Зенькова, Н. Н. Формирование продуктивности однолетних агрофитоценозов на основе высокоэнергетических культур в условиях северо-восточной части Беларуси / Н. Н. Зенькова, В. А. Михальченко, А. Е. Лупанов // Зернобобовые и крупяные культуры. — $2015. - N \cdot 24. - C. 68 - 74. 2.$ Лукашевич, Н. П. Кормопроизводство : учебник для студентов учреждений высшего образования по специальностям «Зоотехния», «Ветеринарная медицина», «Ветеринарная

санитария и экспертиза» / Н. П. Лукашевич, Н. Н. Зенькова. — Минск: ИВЦ Минфина, 2014. — 58. 3. Микуленок, В. Г. Резервы молочного скотоводства / В. Г. Микуленок, Н. Н. Зенькова // Ветеринарный журнал Беларуси. — 2016. — № 1. — С. 21—24. 4. Особенности возделывания многоукосных однолетних ценозов и сорговых культур / Н. П. Лукашевич, В. А. Сковородко, Н. Н. Зенькова, Т. М. Шлома, Л. В. Плешко, Н. Н. Оленич; Витебская государственная академия ветеринарной медицины, Кафедра кормопроизводства и производственного обучения. — Витебск, 2008. — 43 с.

УДК 582.594(476.5)

КЛИМЕНОК М. П., студент; **НОВИКОВ Е. А.,** студент Научный руководитель - **Шимко И. И.,** старший преподаватель УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

ВИДОВОЕ РАЗНООБРАЗИЕ РАСТЕНИЙ СЕМЕЙСТВА ОРХИДНЫЕ (ORCHIDACEAE) ВИТЕБСКОГО РАЙОНА

Введение. Растения семейства Орхидные (Orchidaceae) умеренных широт многолетние травянистые растения с корневыми клубнями, надземными стеблевыми клубнями, корневищами. Они имеют сложную биологию опыления и развития. В адаптациях цветка к опылению насекомыми у разных видов присутствуют: цветовая мимикрия; обман «неопытных» опылителей; сексуальное привлечение. Зародыш семян орхидных полностью лишен запасающих тканей, поэтому они могут прорастать и в дальнейшем развиваться только за счет определенных микоризообразующих грибов.

Орхидные выращиваются как декоративные растения. Корнеклубнеобразующие виды использовались в медицине для приготовления препарата «салеп», обладающего обволакивающим, мягчительным, антиокситичным, антиоксидантным действием. В настоящее время в официальной медицине это сырье практически не используется. Это обусловлено сокращением численности орхидей в естественной среде и трудностью их культивирования в больших масштабах для применения в медицине [4].

Многие виды орхидных способны в течение ряда лет вести подземный образ жизни, а цветение у отдельных видов происходит только при наступлении благоприятных климатических условий. В связи с этим имеются определенные проблемы с установлением динамики численности популяций и местонахождений, которые изменяются - по годам в зависимости от микроклиматических условий экотопов [1, 4].