Таблица 3 – Классифицированные аномалии ног у цыплят в возрасте 120 дней

Оценка походки	Количество цыплят с аномалиями ног, голов				
цыплят, баллов	всего	в том числе по аномалиям			
	5	1 рахит			
2		1 дерматит 1 степени			
		3 дерматит 2 степени			
3	2	2 дерматит 3 степени			
	4	3 хондродистрофия			
4		(перозис, угловая деформация дистального конца большеберцовой кости,			
		вальгусная деформация			
		постановки ног)			
		1 дисхондроплазия большеберцовой кости			
5	1	1 некроз головки бедренной кости			

Данные, представленные в таблице 3, свидетельствуют о том, что ремонтные цыплята 120дневного возраста при клеточном выращивании имеют серьезные нарушения в опорнодвигательной системе. Чаще других аномалий ног встречаются и негативно отражаются на походке цыплят дерматиты различной степени тяжести (поражения кожи стопы и скакательного сустава), а также хондродистрофия (неупорядоченность роста длинных полых костей). Выявленные аномалии ног требуют выбраковки цыплят, что отрицательно сказывается на выходе делового ремонтного молодняка. С учетом того, что нормативный выход делового ремонтного молодняка для яичной птицы должен быть не менее 90%, наличие у 12% цыплят проблем в опорно-двигательной системе указывает на необходимость внесения изменений в технологию выращивания птицы.

Заключение. В результате проведенных нами исследований по изучению состояние ног и типичности походки цыплят по периодам роста установлено, что при клеточном выращивании яичные цыплята имеют значительное количество аномалий ног (12,0%), тяжелые формы которых — дерматит 3 степени, хондродистрофия, некроз головки бедренной кости (4,6%) к концу 120-дневного периода выращивания отрицательно сказываются на двигательной способности молодняка и полноценности походки птицы. Увеличивающееся с возрастом количество аномалий ног у цыплят указывает на необходимость внесения изменений в технологию клеточного выращивания молодняка кур, изначально направленных на предупреждение появления нарушений в опорно-двигательном аппарате птицы.

Питература. 1. Селянский, В. М. Анатомия и физиология сельскохозяйственной птицы / В. М. Селянский. — Москва: Агропромиздат, 1986. — 272 с. 2. Силенок, А. В. Влияние факторов окружающей среды на эколого-физиологические особенности организма птиц в условиях клеточного содержания: автореф. дис. ...канд. биол. наук: 03.02.08 / А. В. Силенок; ФГБОУ ВПО «Брянский государственный университет имени академика И.Г. Петровского». — Брянск, 2012. — 20 с. 3. Оганов, Э. О. Возрастная морфология органов пищеварительной системы кур в зависимости от различной степени двигательной активности: автореф. дис. ...канд. вет. наук: 16.00.02 / Э. О. Оганов; Московская ветеринарная академия имени К.И. Скрябина. — Москва, 1992. — 18 с. 4. Смирнов, К. В. Пищеварение и гипокинезия / К. В. Смирнов. — Москва. — 1990. — 224 с. 5. Имангулов, Ш. А. Клиническая диетология — снижение ущерба от нарушений метаболизма в опорнодвигательной системе у птицы / Ш. А. Имангулов, Т. Т. Папазян, А. Ш. Кавтарашвили. — Сергиев Посад: ВНИТИП, 2002. — 120 с. 6. Соок, М. Е. Leg deformities: inability to increase severity by increasing body weight of chicks and poults / М. Е. Cook, Р. Н. Patterson, М. L. Sunde // Poultry Sc. — 1984. — Vol. 63. — Р. 620-627.

Поступила в редакцию 02.03.2021.

УДК 636.2.087.7

ЭФФЕКТИВНОСТЬ ВКЛЮЧЕНИЯ ПЕПТИДНО-АМИНОКИСЛОТНЫХ ДОБАВОК В РАЦИОН ЛАКТИРУЮЩИХ КОРОВ

*Красочко П.А., *Карпеня М.М., *Подрез В.Н., **Чернявский Е.А., **Луговский А.А., *Карпеня А.М., *Крыцына А.В.

*УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

**Учреждение Белорусского государственного университета «Научно-исследовательский институт физико-химических проблем», г. Минск, Республика Беларусь

В результате проведенных исследований установлено, что применение в рационах коров в середине лактации (101-200 дней) пептидно-аминокислотной хелатированной добавки и пептидно-аминокислотной добавки (без хелатов) позволяет получить большее количество молока в зачетной массе соответственно на 8,2 и 7,4% и достоверно повысить массовую долю жира в молоке соответственно на 0,12 и 0,11 п.п., массовую долю белка — на 0,13 и 0,11, массовую долю лактозы — на 0,17 и 0,19 п.п. (Р<0,01) по сравнению с

контролем. **Ключевые слова:** рацион, лактирующие коровы, пептидно-аминокислотная добавка, пептидно-аминокислотная хелатированная добавка, хелаты, молочная продуктивность, качество молока.

PEPTIDE-AMINOACID ADDITIVES USED IN THE DIETS OF LACTATING COWS

*Krasochko P.A., *Karpenia M.M., *Podrez V.N., **Chernyavsky E.A., **Lugovsky A.A., *Karpenia A.M., *Krytsyna A.V.

*Vitebsk State Academy of Veterinary Medicine, Vitebsk, Republic of Belarus

**Belarusian state University «Scientific-research Institute physical and chemical problems»,

Minsk, Republic of Belarus

As a result of the studies, it was found that use in the diets of cows in the middle of lactation (101-200 days) of a peptide-aminoacid chelated additive and a peptide-aminoacid additive (without chelates) allows to obtain a larger amount of milk in the test mass by 8,2 and 7,4% respectively and to significantly increase the weight fraction of fat in milk by 0,12 and 0,11 p.p., the weight fraction of protein - by 0,13 and 0,11, the weight fraction of lactose - by 0,17 and 0,19 p.p. (P<0,01) compared to control. **Keywords:** diet, lactating cows, peptide-aminoacid additive, peptide-aminoacid chelated additive, chelates, milk productivity, milk quality.

Введение. Молочное скотоводство в Республике Беларусь является одной из наиболее важнейших подотраслей животноводства. Главной продукцией, получаемой в молочном скотоводстве, является молоко. В настоящее время ценность продуктов питания определяется главным образом содержанием в них белков, которые являются единственным источником аминокислот. Молоко и продукты их переработки характеризуются высокой биологической и пищевой ценностью. По химическому составу и пищевым свойствам молоко не имеет аналогов среди других видов естественной пищи. В его состав входят наиболее полноценные белки, молочный жир, сахар, разнообразные минеральные вещества, витамины, большое количество ферментов и других биологически ценных соединений, которые легко перевариваются и на 95% усваиваются организмом [7].

Для поддержания здоровья продуктивных животных значительное место занимает сбалансированное белковое питание. В этом направлении одной из задач научного поиска является повышение эффективности использования протеина. Формирование системы пищеварения зависит от нутриентного состава рациона, что важно для последующего переваривания и преобразования белка у полигастричных животных. Большинство аминокислот могут синтезироваться организмом в процессе обмена. Другие аминокислоты (незаменимые): лизин, гистидин, аргинин, треонин, метионин, валин, лейцин, изолейцин, фенилаланин и триптофан не синтезируются в организме, что требует их дополнительного включения в рацион питания животных [1].

На протяжении последних лет в животноводстве для восполнения дефицита в микроэлементах применяют их неорганические формы [2, 6]. Однако установлено, что соли минеральных веществ не полностью усваиваются в желудочно-кишечном тракте животных, в то время как хелатные соединения биогенных элементов с органическими лигандами проявляют разные виды биологической активности и полностью усваиваются. Эти свойства хелатных соединений делают их привлекательными для теории и практики кормления [3, 5].

Особый интерес для использования в животноводстве представляют соединения металлов с аминокислотами. Известно, что при образовании таких соединений наблюдаются изменения их химических и биологических свойств, причем ионы металлов в сочетании с аминокислотами становятся менее токсичными и могут катализировать различные биохимические процессы. Не менее важно, что высокая эффективность применения микроэлементов органических форм, их более полноценная усваиваемость в организме позволяет сократить дозы в 3-4 раза при том же биологическом эффекте. В связи с высокими требованиями экологов в странах с развитым животноводством (США, Германия, Франция), активно ведутся работы по введению хелатов в корма животным [2, 5]. Роль хелатов заключается в том, чтобы увеличить биологическую доступность минералов и улучшить процесс обмена веществ. Хелаты усваиваются организмом животных лучше, чем неорганические формы минералов. А это значит, что органические микроэлементы в кормах для животных можно использовать в меньшей концентрации. Микроэлементы в форме хелатов можно применять в питании всех видов животных. Хелаты могут замещать 25-40% неорганических минералов, которые животное получает в виде добавок, поскольку являются источником более легкоусвояемых микроэлементов [8, 9].

Цель исследований – установить эффективность применения пептидно-аминокислотных добавок в рационах лактирующих коров.

Материалы и методы исследований. Исследования проведены в ОАО «Кухчицы» Клецкого района Минской области на молочно-товарной ферме привязного содержания. Для проведения научно-хозяйственного опыта по принципу пар-аналогов были сформированы 3 группы коров в середине лактации (101-200 день): одна контрольная и две опытные по 10 голов в каждой (таблица 1).

Таблица 1 - Схема исследований

Группа	Количество животных, гол. (n)	Условия кормления	Продолжи- тельность опыта, дней
1-я контрольная	10	Основной рацион (ОР) - кормосмесь (силос кукурузный, сенаж злаково-бобовый, комбикорм КС-60)	
2-я опытная	10	OP + добавка пептидно-аминокислотная хелатированнная (рецепт № 1)	90
3-я опытная	10	ОР + добавка пептидно-аминокислотная (рецепт № 2)	

Продолжительность учетного периода опыта составила 90 дней, подготовительный период длился 10 дней. Коровы 2-й опытной группы дополнительно к основному рациону получали добавку пептидно-аминокислотную хелатированную по рецепту № 1 и 3-й опытной группы – добавку пептидно-аминокислотную – по рецепту № 2 (таблица 2).

Таблица 2 – Состав пептидно-аминокислотных добавок

		Состав пептидно-	Состав пептидно-		
Наименование	Hanna	аминокислотной добавки	аминокислотной		
показателя	Норма	хелатированной	добавки		
		(рецепт № 1)	(рецепт № 2)		
Внешний вид, цвет	Жидкость с осадком дебриса дрожжей, от молочно-коричневого до коричневого цвета	соответствует	соответствует		
Плотность, г/см ³	1,0-1,1	1,1	1,1		
Концентрация водородных ионов (рН)	6,5-7,0	6,7	6,6		
Аминный азот, %,	не менее 0,3	0,5	0,5		
Полипептиды, %	не менее 2,0	10,0	10,0		
Белок по Лоури, %	не менее 0,5	1,5	1,5		
Витамины группы D, тыс. МЕ/мл	не менее 500	600	600		
Витамин Е, г/т	450-500	500	500		
Витамин А, млн МЕ/т	675-835	750	750		
Йод, г/т	5,5-6,5	6,0	-		
Кобальт, г/т	40,0-50,0	45,0	-		
Марганец, кг/т	0,15-0,30	0,2	-		
Медь, кг/т	0,2-0,3	0,25 8,0	-		
Селен, г/т	Селен, г/т 5,0-10,0		<u>-</u>		
Цинк, кг/т	1,0-1,5	1,25	-		

Изучаемые пептидно-аминокислотные добавки разработаны сотрудниками учреждения Белорусского государственного университета «Научно-исследовательский институт физико-химических проблем» и учреждения образования «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины». Они отличаются тем, что рецепт добавки № 1 дополнительно содержит хелатированные микроэлементы. Изучаемые добавки относятся к малотоксичным веществам и по ГОСТ 12.1.007-76 к 4 классу веществ по степени опасности и токсичности. Поэтому их можно использовать в кормлении продуктивных животных в качестве кормовой добавки.

Кормление коров осуществлялось кормосмесью при помощи мобильного кормораздатчика ИСРК-12Ф «Хозяин». Выдача кормов производилась по установленным нормам три раза в день. Нормы кормления соответствовали продуктивности подопытных коров.

Качество молока определяли согласно требованиям СТБ 1598-2006 «Молоко коровье сырое. Технические условия» с изменениями № 3 к указанному стандарту в соответствии с ГОСТ: органолептические показатели молока – по ГОСТ 28283—2015 «Молоко коровье. Метод органолептической оценки вкуса и запаха»; содержание массовой доли жира – по ГОСТ 5867-90 «Молоко и молочные продукты. Методы определения жира»; содержание массовой доли белка – по ГОСТ 25179-90 «Молоко. Методы определения белка»; массовая доля сухого вещества, СОМО, лактозы, белка – на анализаторе качества молока «Лактан 1-4М исполнения 600 Ultra»; титруемая кислотность – по ГОСТ 3624-92 «Молоко и молочные продукты.

Титриметрические методы определения кислотности»; плотность — по ГОСТ 3625-84 «Молоко и молочные продукты. Методы определения плотности»; степень чистоты — по ГОСТ 8218-89 «Молоко. Метод определения чистоты»; бактериальная обсемененность — по ГОСТ 9225-84 «Молоко и молочные продукты. Методы микробиологического анализа»; количество соматических клеток — по ГОСТ 23453-90 «Молоко. Методы определения количества соматических клеток» и на анализаторе соматических клеток «EcomilkScan».

Цифровой материал, полученный по результатам исследований, обработан методом биометрической статистики с помощью ПП Excel и Statistica.

Результаты исследований. Применение в рационах лактирующих коров добавки пептидно-аминокислотной хелатированной и добавки пептидно-аминокислотной позволило повысить показатели молочной продуктивности (таблица 3).

Таблица 3 - Молочная продуктивность коров

Показатели	1-я контрольная группа		2-я опытная группа		3-я опытная группа	
Показатели	в начале	в конце	в начале	в конце	в начале	в конце
	опыта	опыта	опыта	опыта	опыта	опыта
Суточный удой на одну	22,4±	23,0±	22,1±	24,6±	22,6±	24,3±
корову, кг	3,21	2,35	4,16	2,92	3,58	3,07
V	224±	230±	221±	246±	226±	243±
Удой по группе коров, кг	28,7	23,4	26,2	21,7	29,1	24,6
Валовой надой за 90 дней опы-	20700.0		22140.0		21970.0	
та, кг	207	700,0	22140,0		21870,0	
Массовая доля жира в среднем за период опыта, %	4,14		4,19		4,21	
Количество полученного молока в зачетной массе, кг	23805,0		25768,5		25575,8	
В % к контролю	100		108,2		107,4	

В начале эксперимента среднесуточный удой на одну корову находился на уровне 22,1-22,6 кг и не имел существенных межгрупповых различий. В конце опыта удой коров по сравнению с начальным периодом стал несколько выше, но со значительными различиями между группами. Так, коровы 2-й опытной группы, которые в составе рациона получали добавку пептидно-аминокислотную хелатированную, по среднесуточному удою превосходили аналогов 1-й контрольной группы на 1,6 кг, или на 7,0%, коровы 3-й опытной группы, которым в составе рациона скармливали добавку пептидно-аминокислотную по рецепту № 2 (без хелатов), — на 1,3 кг, или на 5,7%. Коровы 2-й и 3-й опытных групп по валовому надою за 90 дней опыта имели преимущество над животными контрольной группы.

Коровы 1-й контрольной группы уступали аналогом 2-й и 3-й опытных групп по массовой доле жира в молоке соответственно на 0,05 и 0,07 процентных пунктов. В результате пересчет валового надоя за 90 дней опыта на базисную жирность (3,6%) позволил получить во 2-й опытной группе дополнительно 8.2% молока в зачетной массе. в 3-й опытной группе – на 7.4%.

Следует отметить, что практически все показатели качества молока находились на достаточно высоком уровне и по своим значениям соответствовали требованиям, предусмотренным СТБ 1598-2006 с изменениями № 3 от 01.09.2015 г. к молоку сортом «экстра».

Таблица 4 – Показатели качества молока коров

Показатели	1-я контрольная		2-я опытная		3-я опытная		
	группа		группа		группа		
	в начале	в конце	в начале	в конце	в начале	в конце	
	опыта	опыта	опыта	опыта	опыта	опыта	
	цвет – белый с кремовым оттенком; консистенция – однородная, без слизи и хло-						
Органолептические	пьев; запах и вкус – свойственные доброкачественному молоку,						
	без посторонних привкусов и запахов						
Массовая доля жира, %	4,12±0,06	4,16±0,05	4,09±0,08	4,28±0,04	4,15±0,05	4,27±0,03 *	
Массовая доля белка, %	3,31±0,03	3,28±0,04	3,26±0,04	3,41±0,03 *	3,29±0,06	3,39±0,04 *	
Массовая доля лактозы, %	4,74±0,06	4,82±0,04	4,68±0,04	4,99±0,05 **	4,81±0,07	5,01±0,06 **	
COMO, %	8,80±0,18	8,83±0,14	8,75±0,16	8,90±0,12	8,84±0,21	8,91±0,13	
Плотность, кг/м ³	1029,1±	1031,4±	1030,5±	1032,0±	1030,3±	1031,6±	
	12,51	16,08	14,29	15,19	13,47	14,93	
Титруемая кислотность, ⁰ Т	17,6±0,48	16,8±0,34	17,8±0,42	16,6±0,29	17,0±0,54	16,8±0,31	
Группа чистоты	I	I	I	I	I	I	
Бактериальная обсеме- ненность, тыс./см ³	300	100	300	100	100	100	
Соматические клетки, тыс./см ³	284±29,4	272±26,2	276±30,9	251±24,4	297±31,6	248±25,9	

Примечания: * - Р<0.05; ** - Р<0.01.

Анализ показателей качества молока коров начинали проводить с органолептической оценки (таблица 4). Установлено, что по органолептическим показателям (цвету, вкусу, запаху и консистенции) как в начале, так и в конце научно-хозяйственного опыта молоко соответствовало нормативным требованиям ГОСТа 28283—2015 «Молоко коровье. Метод органолептической оценки вкуса и запаха».

По массовой доле жира в молоке отмечается достоверное превосходство коров 2-й и 3-й опытных групп над животными 1-й контрольной группы соответственно на 0,12 и 0,11 п.п. (P<0,05). Необходимо отметить существенное различие между подопытными коровами по содержанию массовой доли белка в молоке. Так, по этому показателю коровы 2-опытной группы превосходили аналогов 1-й контрольной группы на 0,13 п.п. (P<0,05), животные 3-опытной группы — на 0,11 п.п. (P<0,05). Достоверные различия по массовой доле белка в молоке, на наш взгляд, обусловлены наличием в изучаемых добавках аминокислотного комплекса.

В конце опыта выявлены достоверные различия между коровами подопытных групп по массовой доле лактозы в молоке. Так, по этому показателю коровы 2-й опытной группы превосходили сверстниц 1-й контрольной группы на 0,17 п.п. (P<0,01), животные 3-й опытной группы – на 0,19 п.п. (P<0,01), что, по-видимому, явилось следствием активизации углеводного обмена в организме коров под действием пептидно-аминокислотных добавок.

У коров 2-й и 3-й опытных групп прослеживается увеличение сухого обезжиренного молочного остатка соответственно на 0,07 и 0,08 п.п. по сравнению с аналогами 1-й контрольной группы. Такая же закономерность прослеживается по плотности молока. Так, в конце эксперимента этот показатель у животных 1-й контрольной группы был меньше по сравнению с коровами опытных групп. Титруемая кислотность молока находилась в пределах нормативных требований и существенных различий между группами не имела. Чистота молока соответствовала первой группе у всех подопытных коров.

В конце опыта у коров всех групп бактериальная обсемененность молока соответствовала высококачественному молоку и составляла до 100 тыс./см³. Количество соматических клеток у коров контрольной и опытных групп находилось на уровне до 300 тыс./см³, что соответствовало молоку сорта «экстра». У коров 2-й опытной группы этот показатель был ниже, чем у сверстниц 1-й контрольной группы, на 21 тыс./см³, или на 7,7%, у коров 3-й опытной группы — на 24 тыс./см³, или на 8,8%.

Заключение. 1. Экспериментально установлено, что применение в рационах лактирующих коров пептидно-аминокислотной хелатированной добавки и пептидно-аминокислотной добавки позволяет получить большее количество молока в зачетной массе соответственно на 8,2 и 7,4%, чем в контроле.

2. Включение в состав рациона лактирующих коров пептидно-аминокислотной хелатированной добавки и пептидно-аминокислотной добавки способствует повышению качества молока, на что указывает увеличение массовой доли жира в молоке соответственно на 0,12 и 0,11 п.п. (Р<0,05), массовой доли белка в молоке – на 0,13 и 0,11 (Р<0,05), массовой доли лактозы – на 0,17 и 0,19 п.п. (Р<0,01) и тенденция к оптимизации других качественных показателей молока по сравнению с коровами контрольной группы.

Литература. 1. Влияние незаменимых аминокислот на переваримость питательных веществ в различных отделах желудочно-кишечного тракта телят / В. В. Гречкина [и др.] // Животноводство и кормопроизводство. – 2020. – Т. 103, № 2. – С. 115-124. 2. Карпеня, М. М. Органический селен в кормлении племенных бычков / М. М. Карпеня, Ю. В. Шамич // Ученые записки учреждения образования «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины» : научно-практический журнал. – Витебск, 2009. – Т. 45, вып.2, ч. 2. – С. 69-73. 3. Петрова, Ю. А. Обмен энергии и азота у лактирующих коров при использовании в кормлении минерального премикса, обогащенного аминокислотами / Ю. А. Петрова, Л. П. Ярмоц // Кормление сельскохозяйственных животных и кормопроизводство. - 2014. - № 1. - С. 29-34. 4. Славецкий, В. Б. Рекомендации по организации биологически полноценного кормления коров / В. Б. Славецкий, Н. П. Разумовский, И. Я. Пахомов. – Витебск : ВГАВМ, 2004. – 38 с. 5. Топорова, Л. Хелатная форма микроэлементов Хромбелмин в кормлении высокопродуктивных лактирующих коров / Л. Топорова, М. Сыроватский, И. Топорова // Ветеринария сельскохозяйственных животных. – 2019. – № 8. – С. 52–57. 6. Швакель, Е. Влияние бета-аминокислот на азотистый обмен и продуктивность лактирующих коров / Е. Швакель // Международный сельскохозяйственный журнал. – 2008. – № 6. – С. 81. 7. Шляхтунов, В. И. Скотоводство : учебник / В. И. Шляхтунов, А. Г. Марусич. – Минск : ИВЦ Минфина, 2017. – 480 с. 8. Ярмоц, Г. А. Влияние хелатных соединений цинка и меди на морфо-биохимические показатели крови у коров в период раздоя / Г. А. Ярмоц // Кормление сельскохозяйственных животных и кормопроизводство. – 2012. – № 2. – С. 37–40. 9. Чепелев, Н. А. Минеральный обмен у коров при использовании хелатных соединений микроэлементов / Н. А. Чепелев, И. С. Харламов // Вестник Курской государственной сельскохозяйственной академии. – 2013. – № 9. – С. 64-66. Поступила в редакцию 26.02.2021.

83