# ВЕТЕРИНАРНАЯ МЕДИЦИНА БЕЛАРУСИ

УДК 961:616.36-002:636.4-053.2 ВЕЛИКАНОВ В.В., АБРАМОВ С.С., Витебская ордена «Знак Почета» государственная академия ветеринарной медицины

# ВЛИЯНИЕ НАТРИЯ ГИПОХЛОРИТА И ЭНТЕРОСОРБЕНТА СВ-1 НА БЕЛКОВЫЙ СОСТАВ СЫВОРОТКИ КРОВИ И УРОВЕНЬ ПОКАЗАТЕЛЕЙ ЕСТЕСТВЕННОЙ РЕЗИСТЕНТНОСТИ ПОРОСЯТ, БОЛЬНЫХ ТОКСИЧЕСКОЙ ГЕПАТОДИСТРОФИЕЙ



ВЕЛИКАНОВ Виталий Викторович в 1990 году закончил Рогачевскую СШ № 3, в 1991 году поступил и в 1996 году успешно закончил Витебскую государственную академию ветеринарной медицины. С сентября 1996 года работает ассистентом кафедры клинической диагностики ВГАВМ.

Печень, как центральный орган химического гомеостаза организма, выполняет важнейшие жизненные функции: участвует в метаболизме белков, углеводов, липидов, пигментов, витаминов и других веществ, экскретирует желчь, обезвреживает токсины, депонирует ионы железа, меди и т.д. Печень является центральным органом, где происходит химическое превращение (трансформация) ксенобиотиков. Известно, что печень работает как мощный окислитель, превращая водонерастворимые вещества в водорастворимые, которые затем удаляются почками. При болезнях печени нарушаются процессы обезвреживания токсических веществ, поступающих извне или образующихся в ходе межклеточного обмена. снижается фагоцитоз звездчатыми эндотелиоцитами микроорганизмов и их токсинов, иммунных комплексов (антиген — антитело), жировых капель и других агентов, т.е. страдает барьерная функция [1].

Одним из наиболее распространенных и опасных заболеваний печени у поросят является токсическая гепатодистрофия, сопровождающаяся тяжелой интоксика-

цией и летальностью [4].

В существующих в настоящее время методиках комплексного лечения больных животных при гепатодистрофиях основное внимание уделяется использованию противомикробных средств (антибиотики, сульфаниламиды и нитрофурановые соединения). Однако, подавляя деятельность как патогенной кишечной микрофлоры, так и условно-патогенной, эти препараты могут привести к дисбактериозу, особенно при нерациональном их применении.

Между тем использование широко применяемых в ветеринарной практике препаратов, улучшающих работу печени, снимающих явления токсикоза, вводимых внут-

ривенно для свиней, затруднено.

Широкое распространение, высокая смертность (40%), нетехнологичность применения вышеуказанных препаратов и значительный экономический ущерб, наносимый свиноводству токсической гепатодистрофией поросят, обусловливают актуальность и целесообразность поиска новых, высокоэффективных и недорогостоящих средств для борьбы с данным заболеванием.

В связи с этим нами были использованы 0,037%-й раствор натрия гипохлорита [2, 3] и энтеросорбент СВ-1. Целью нашей работы явилось изучение влияния натрия

гипохлорита и энтеросорбента CB-1 на белковый состав сыворотки крови и естественную резистентность в процессе лечения поросят, больных токсической дистрофией печени.

Для этого было сформировано три группы поросят, больных токсической гепатодистрофией. Группы состояли из поросят 25—28-дневного возраста по 15 животных в каждой с приблизительно одинаковыми живой массой и тяжестью патологического процесса. Животные всех групп находились в аналогичных условиях кормления и содержания. Лечение поросят контрольной группы осуществлялось согласно методике, принятой в хозяйстве. Животным первой группы в качестве основного лечебного препарата вводился 0,037%-й раствор натрия гипохлорита в дозе 5 мл/кг живой массы один раз в сутки внутрибрюшинно; поросятам второй группы в корм добавлялся энтеросорбент СВ-1 в дозе 1,5 г на поросенка однократно ежедневно до выздоровления.

Ежедневно у всех поросят устанавливался клинический статус. В начале, на 4-е сутки и в конце лечения (9-е сутки) у пяти поросят каждой группы брали кровь для исследований, в которых проводилось определение белкового состава и показателей естественной рези-

стентности.

У всех животных клинически заболевание проявлялось общим угнетением, поносами, общей мышечной слабостью, желтушностью слизистых оболочек и кожи, иногда судорогами, рвотой, анорексией. При исследовании крови наблюдалось увеличение уровня общего белка сыворотки крови в среднем до 64,9 г/л, что было на 11% (в среднем) выше уровня референтных величин здоровых поросят данного возраста. При этом отмечалось снижение содержания альбуминов, на фоне повышения уровня  $\beta$  и углобулинов, что говорит о токсическом повреждении печени [5]. Наблюдался низкий уровень бактерицидной и фагоцитарной активности.

В дальнейшем по мере проведения исследований у поросят контрольной и подопытных групп были отмечены выраженные различия в клиническом статусе и содер-

жаний исследуемых показателей.

Так, на 4-е сутки лечения у поросят подопытных групп происходило улучшение состояния, животные становились подвижными, каловые массы их были коричневого цвета, сформированы, исчезала желтушность слизистых

## ВЕТЕРИНАРНАЯ МЕДИЦИНА БЕЛАРУСИ

оболочек и кожи, поросята хорошо принимали корм, а к завершению лечения (9-е сутки) признаков заболевания у поросят подопытных групп практически не наблюдалось.

У контрольных животных в этот период наблюдалось угнетение, мышечная слабость, отказ от корма, поносы, желтушность слизистых оболочек и кожи, т.е. интоксикация организма продолжалась.

Вышеуказанные данные подтверждались показателями биохимического и иммунологического исследований крови.

Из таблицы 1 видно, что с 4-х по 9-е сутки лечения (завершение опыта) у поросят подопытных групп происходила значительная нормализация показателей белкового обмена. Так, в сыворотке крови подопытных животных происходило снижение общего белка в среднем в 1,2; β-глобулинов — в 1,3; γ-глобулинов — в 1,4 раза и повышение альбуминов в 1,2 раза. У поросят контрольной группы данные показатели практически не изменялись.

Аналогично происходило изменение уровня показателей естественной резистентности, о чем свидетельствуют данные таблицы 2.

ЗАКЛЮЧЕНИЕ. Натрия гипохлорит и энтеросорбент CB-1, включенные в комплексную схему лечения поросят, больных токсической гепатодистрофией, оказывают нормализующее влияние на состояние белкового обмена и уровень показателей естественной резистентности.

### **ЛИТЕРАТУРА**

1. Анохин Б. М., Данилевский В. М., Замарин Л.Г. и др.; Под ред. В. М. Данилевского. Внутренние незаразные болезни сельскохозяйственных животных. — М.: Агропромиздат, 1991.— 575 с.: ил.

2. Абрамов С.С., Коваленок Ю.К. Влияние натрия гипохлорита на клеточные и гуморальные показатели естественной резистентности организма телят, больных диспепсией// Весці Акадэміі аграрных навук Рэспублікі Беларусь. № 2.— 1998.— С.84—87.

3. Абрамов С.С., Коваленок Ю.К. Патогенетическая терапия при диспепсии телят/Экологические проблемы патологии, фармакологии и терапии животных / Материалы Международного координационного совещания. 19—23 мая 1997 г. — Воронеж, 1997. — С. 283—284

4. Карпуть И.М., Порохов Ф.Ф., Абрамов С.С. и др.; Под ред. И.М.Карпутя. Незаразные болезни молодняка. — Мн.: Ураджай, 1989. — 240 с.

5. Колб В.Г., Камышников В.С. Клиническая биохимия. — Мн.: Беларусь, 1976.— 306 с.

Таблица 1
Динамика показателей белкового состава сыворотки крови поросят, больных токсической гепатодистрофией, под влиянием лечения

| Показатели крови       | Наименован. групп | до введения | 4-е сутки после введения | 9-е сутки после введения |
|------------------------|-------------------|-------------|--------------------------|--------------------------|
| Общ. белок, г/л (M±m)  | подопытная №1     | 64,8±0,27   | 63,2 ± 0,1               | 57,30±0,25               |
|                        | подопытная №2     | 65,1 ± 0,03 | 61,36±0,39               | 58,3 ± 0,27              |
|                        | контрольная       | 64,9±0,08   | 65,05 ±0,1               | 64,77±0,09               |
| альбумины г/л. (M±m)   | подопытная №1     | 21,82±0,49  | 22,88±0,51               | 23,02±0,02               |
|                        | подопытная №2     | 22,0 ±0,03  | 23,2 ±0,17               | 24,1±0,07                |
|                        | контрольная       | 21,97±0,82  | 21,0 ±0,67               | 21,99±0,49               |
| α-глобулины г/л. (M±m) | подопытная №1     | 12,68 ±0,1  | 13,42 ±0,02              | 12,4 ±0,07               |
|                        | подопытная №2     | 13,52±0,03  | 13,16 ±0,27              | 12,68 ±0,1               |
|                        | контрольная       | 12,68 ±0,1  | 13,42 ±0,02              | 13,21±0,09               |
| β-глобулины г/л. (M±m) | подопытная №1     | 11,30 ±0,36 | 9,94 ± 0,03              | 8,02 ±0,18               |
|                        | подопытная №2     | 11,14±0,15  | 9,0 ± 0,07               | $8,20 \pm 0,06$          |
|                        | контрольная       | 11,34±0,08  | 11,13±0,02               | 11,04 ± 0,05             |
| ү-глобулины г/л. (M±m) | подопытная №1     | 18,92 ±0,09 | 16,96 ±0,13              | 13,0 ±0,09               |
|                        | подопытная №2     | 18,44 ±0,15 | 16,0 ± 0,22              | 14,45 ± 0,07             |
|                        | контрольная       | 18,96 ±0,12 | 18,88 ±0,07              | 18,53 ±0,07              |

Таблица 2

### Некоторые показатели естественной резистентности поросят, больных токсической гепатодистрофией, под влиянием лечения

| Показатели крови     | Наименован. групп | до введения | 4-е сутки после введения | 9-е сутки после введения |
|----------------------|-------------------|-------------|--------------------------|--------------------------|
| Бак. активн. % (M±m) | подопытная №1     | 38,0 ± 0,82 | 42,5 ± 0,29              | 51,25±0,49               |
|                      | подопытная №2     | 36,0 ± 0,82 | 42,5 ± 0,29              | 52,6 ± 0,49              |
|                      | контрольная       | 36,5± 1,2   | 35,9 ± 0,67              | 36,3 ± 0,88              |
| Фаг. акгивн. % (M±m) | подопытная №1     | 19,0 ±0,41  | 21,25±0,49               | 29,25±0,48               |
|                      | подопытная №2     | 18,5 ±0,39  | 21,2 ±0,45               | 26,5± 0,85               |
|                      | контрольная       | 19,0 ±0,58  | 19,2 ± 0,52              | 19,8±0,41                |
| Фаг. число (M±m)     | подопытная №1     | 7,8 ± 0,2   | 8,8 ±1,2                 | 9,25 ± 0,2               |
|                      | подопытная №2     | 6,7 ± 0,3   | 8,7 ±1,5                 | 9,26 ± 0,2               |
|                      | контрольная       | 6,7 ±0,18   | 6,6 ±1,3                 | 6,9 ± 0,28               |
| Фаг. индекс (M±m)    | подопытная №1     | 5,8 ±0,12   | 6,8 ± 0,21               | 7,3 ± 0,2                |
|                      | подопытная №2     | 5,6 ±0,14   | 6,7 ± 0,22               | 7,2 ± 0,4                |
|                      | контрольная       | 5,7 ± 0,2   | 5,6 ± 0,54               | 5,8 ± 0,4                |