УДК 619:616.155.194.084

С.Б. СПИРИДОНОВ, аспирант, Г.А. СОКОЛОВ, доктор ветеринарных наук, профессор, УО "Витебская ордена "Знак Почета" государственная академия ветеринарной медицины"

ПРОФИЛАКТИКА АЛИМЕНТАРНОЙ АНЕМИИ ПОРОСЯТ ПРИ РАЗЛИЧНЫХ УСЛОВИЯХ МИКРОКЛИМАТА

Переход на промышленное производство свинины выявил ряд существенных недостатков в существующей системе выращивания свиней. Так более значительное изменение среды обитания и более высокая концентрация животных в одном помещении обострило их реакцию на стрессы. На дальнейшее развитие поросятсосунов оказывают влияние и ряд заболеваний на почве недостаточности микроэлементов. Наибольшего внимания заслуживает алиментарная анемия поросят-сосунов.

Алиментарная анемия поросят-сосунов — болезнь молодняка свиней молочного периода, характеризуется расстройством органов кроветворной системы, нарушением обмена веществ, отставанием в росте и развитии, снижением резистентности. Поросята-сосуны рождаются с высоким уровнем обмена веществ, а запас биологически активных веществ невелик. У поросят мал запас железа и высокий расход его (около 10 мг/сутки или 27 мг на 1 кг прироста живой массы). Процесс усвоения железа также далек от совершенства по следующим причинам: недостаточное развитие железистого аппарата желудка и двенадцатиперстной кишки, недостаточное поступление железа в организм поросят с кормом, недостаток витамина В]2 и С, дефицит глобулинов (входят в состав пиролового кольца протопорфириновой части тема).

Для профилактики алиментарной анемии поросят-сосунов применяются разнообразнейшие соединения железа, такие как: ферроглюкин, альгоферрин, биоферринит, дипроанемин, суиферровит, ферроген, ферридекстран, ферродекс, импозил и другие [1]. Помимо недостатка железа и витаминов в рационе у поросятсосунов на течение анемии определенное влияние оказывает и микроклимат. Так, известно, что в условиях застоя цоздуха внутри животноводческих помещений (аэростаза) формируется неудовлетворительный микроклимат, который оказывает негативное влияние на организм поросят [2]. Одним из основных показателей аэростаза является превышение показателей химического состава воздуха в помещении — аммиак. Повышенные его концентрации вызывают снижение концентрации эритроцитов и гемоглобина [3,5].

Поэтому одной из задач наших исследований было изучить влияние повышенных концентраций аммиака на эффективность профилактики анемии у поросят-сосунов новым средством — морской солью [4].

Для этого было сформировано 5 групп поросят-сосунов. Первая группа получала внутримышечно ферроглюкин-75, в дозе 2 мл на поросёнка, в 3—5 и 10—12-дневном возрасте и содержалась в условиях нормативного микроклимата. Вторая группа получала ферроглюкин-75 в той же дозе и содержалась в условиях застоя воздуха (аэростаза). Третья группа получала морскую соль внутрь в дозе 0,3—0,5% по питательности рациона, на слегка подкис-

ленной, соляной кислотой, кипяченой воде и содержалась в условиях нормативного микроклимата. Четвертая опытная группа получала морскую соль в той же дозе и содержалась в условиях застоя воздуха (аэростаза). Пятая группа служила контролем и препаратов железа не получала.

Исследования микроклимата и крови (концентрация гемоглобина, содержание эритроцитов, содержание лейкоцитов, концентрация железа в сыворотке крови, гематокрит, содержание общего белка в сыворотке крови) проводились по общепринятым зоогигиеническим, гематологическим и биохимическим методикам.

Было установлено, что концентрация аммиака в зоне размещения второй и четвертой групп (аэростаз) в воздухе составила 17 мг/м³ (при норме 15 мг/м³), относительная влажность воздуха составила 84% (при норме 70%), скорость движения воздуха равнялась 0,09 м/с (при норме 0,15 м/с). В остальных исследуемых группах концентрация аммиака была в пределах гигиенических нормативов: 13—15 мг/м³.

Полученные данные обрабатывали статистически. Результаты исследований представлены в таблице.

Показатели крови поросят-сосунов в начале опыта во всех группах достоверных различий между собой не имели.

Концентрация гемоглобина в середине опыта в первой группе составляла 90.2 ± 1.15 г/л, что на 8.4 и 7.2% выше, чем в третьей и четвертой группах, а во второй группе достигла 92.0 ± 1.15 г/л, что на 10.6 и 9.3% больше, чем в третьей и четвертой группах. В конце опыта в первой группе — 94.0 ± 0.99 г/л, что на 7.8 и 6.1% выше, чем во второй группе и четвертой группах, а в третьей группе было 91.8 ± 1.15 г/л, что на 5.3% больше, чем во второй группе.

Содержание эритроцитов в середине опыта в первой группе составляло $4,61\pm0,03$ х 10^{12} /л, что на 3, 3,1 и 6% выше, чем во второй, третьей и четвертой группах, во второй группе было $4,48\pm0,03$ х 10^{12} /л, что на 3% больше, чем в четвертой, а в третьей группе — $47\pm0,03$ х 10^{12} /л, что на 2,8% опережает четвертую группу.

Концентрация лейкоцитов в крови и железа в сыворотке крови в середине и конце опыта во всех опытных группах существенных различий не имели.

Гематокрит в конце опыта в первой группе составлял 36,1%, что на 11,8% выше, чем во второй группе, а в третьей группе был 34,7%, что на 7,4% выше, чем во второй группе.

Уровень общего белка в середине опыта существенно отличалось только у поросят пятой группы. В конце опыта в третьей группе составляло 68,8%, что на 6,5% выше, чем во второй группе.

Более значительная разница отмечена при сравнении первой, второй, третьей и четвертой (опытных) групп с пятой (кон-

Таблица

Показатели крови поросят-сосунов

Показатели крови	1 группа			2 группа			3 группа			4 группа			ľ
Этапы исследований	1	2	3	1	2	3	1	2	3	1	2	3	1
Гемоглобин, г/л	92,6±1,08	90,2±1,15	94,0±0,99*	94,4±1,19	92,0±1,15	87,2±1,1*	94,0±1,25	83,2±0,71	91,8±1,13	93,8±1,01	84,2±0,97	88,6±1,27	93,2±0,90
Эритроциты, х10 ¹² /л	5,53±0,02	4,61±0,03*	5,30±0,08	5,57±0,03	4,48±0,03*	5,23±0,09	5,54±0,02	4,47±0,02**	5,23±0,08	5,54±0,03	4,35±0,02**	5,11±0,07	5,45+0,03
Лейкоциты, х10 ⁹ /л	5,01±0,01	5,87±0,09	6,92±0,12	4,99±0,01	5,93±0,101	7,03±0,08	5,00±0,01	5,97±0,10	6,95±0,07	5,00±0,01	5,97±0,08	6,81±0,091	5,02±0,01
Сывороточное железо, мкмоль/л	31,4±1,04	38,4±0,93	38,4±1,93	31,7±1,67	37,7±1,13	36,6±2,15	31,5±1,12	38,4±0,90	39,0±1,53	31,7±0,80	37,4±0,90	38,8±0,94	31,7±0,67
Гематокрит, %	34,1±0,62	32,5±0,96	36,1±0,79*	33,9±0,78	31,5±0,96	32,3±0,73*	34,2±0,75	31,2±1,00	34,7±0,79	34,9±0,84	32,2±0,70	33,8±0,88	33,7±0,67
Общий белок, г/л	68,2±1,5	65,2±1,1	67,6±1,1	67,8±1,7	63,8±±1,4	64,6±1,5	69,0±1,5	65,6±0,8	68,8±1,2	69,4±1,1	65,6±1,3	67,0±0,3	68,8±1,5

трольной) группой, при этом заболеваемость в пятой группе — 100%, а летальность — 30%. В опытных группах алиментарная анемия поросят-сосунов не наблюдалась.

Концентрация гемоглобина в середине опыта в пятой группе составила $74,2\pm0,88$, что на 21,2,23,7,11,8 и 13,2% ниже, чем в первой, второй, третьей и четвертой группах, а в конце опыта в пятой группе была $56,6\pm0,88$, что на 60,1,54,1,62,2 и 56,5% меньше, чем в первой, второй, третьей и четвертой группах.

Содержание эритроцитов в середине опыта в пятой группе составляло $3,46\pm0,06 \times 1012/\Pi$, что на 66,6,29,5,29,2 и 25,8% ниже, чем в первой, второй, третьей и четвертой группах, а в конце опыта достигло $4,71\pm0,15 \times 10$ /л, что на 12,4,11,0,11,0 и 8,5% меньше, чем в первой, второй, третьей и четвертой группах.

Концентрация лейкоцитов в крови в конце опыта в пятой группе составляла 7,53±0,10 х10⁹/л, что на 8,8, 7,1, 8,3 и 10,6% выше, чем в первой, второй, третьей и четвертой группах.

Железо в сыворотке крови в середине опыта в пятой группе составляло 19,5 \pm 0,94 мкмоль/л, что на 97,0, 93,7, 96,7 и 92,1% ниже, чем в первой, второй, третьей и четвертой группах, а в конце опыта в пятой группе было 18,1 \pm 0,94 мкмоль/л, что на 112,1, 102,0, 115,3 и 114,5% меньше, чем в первой, второй, третьей и четвертой группах.

Гематокрит в середине опыта в пятой группе составлял 24,2±0,73%, что на 34,3, 30,2, 28,9 и 33,1% ниже, чем в первой, второй, третьей и четвертой группах, а в конце опыта в пятой группе был 23,3±0,70%, что на 54,9, 38,6, 48,9 и 46,1% меньше, чем в первой, второй, третьей и четвертой группах.

Уровень общего белка в середине опыта в пятой группе составил 58,8±1,1 г/л, что на 5,98, 6,3, 5,6 и 9,0% ниже, чем в первой, второй и третьей группах, между четвертой и пятой группами достоверных различий нет, а в конце опыта общий белок в пятой группе достиг 61,4±2,5 г/л, что на 11,2, 7,3, 9,6 и 5,9% меньше,

чем в первой, второй, третьей и четвертой группах.

Ликвидация аэростазов в помещениях достигается путем наладки вентиляционных систем и аэрозольных обработок.

Заключение: алиментарная анемия поросят-сосунов наносит большой ущерб свиноводству, особенно в условиях аэростаза помещений, который оказывает существенное негативное влияние на профилактику алиментарной анемии поросят-сосунов. Морскую соль внутрь в дозе 0,3—0,5% по питательности рациона на слегка подкисленной соляной кислотой, кипяченой воде можно применять для профилактики алиментарной анемии поросятсосунов. Морская соль и ферроглюкин-75 могут успешно применяться в различных условиях микроклимата.

ЛИТЕРАТУРА

- 1. Кленова И.Ф., Яременко Н.А. Ветеринарные препараты в России: Справочник/И.Ф. Кленова, Н.А. Яременко. М: Сельхозиздат, 2000. С. 296—300.
- 2. Сидоров В.Т., Хохлова И.И., Зубцова В.В., Новиченок Т.Н. Выращивание поросят на промышленных комплексах. Мн., Ураджай, 1976. С. 47—48.
- 3. Соколов Г.А. Аэростазы микроклимата животноводческих помещений. Уч. Записки ВГАВМ. Витебск, 1994. T. 31. C. 172 174.
- 4. Спиридонов С.Б., Соколов Г.А., Кузьмина И.П. Применение морской соли для профилактики алиментарной анемии поросят-сосунов/Сборник статей Международной научнопрактической конференции, г. Витебск, 22—23 мая 2001 года. Витебск: ВГАВМ, 2001. С. 226.
 - 5. Curtis S.E. Whot's up in the air. Pigs. 1986. 2. 3. P. 22—23.

Представительство "Intervet International B.V." в РБ: г. Минск, пр-т Пушкина, 39—311. Тел.: (017) 257-54-90, факс 206-79-62. www.intervet.by

ПГ-600®

Эффективный и безопасный препарат для стимуляции охоты и синхронизации овуляции у половозрелых свиноматок

- ПГ-600® содержит комбинацию двух наиболее важных гормонов, необходимых для стимуляции развития фолликулов (сывороточный гонадотропин (СЖК) 400 МЕ), овуляции и образования желтого тела (хорионический гонадотропин (hCG) 200 МЕ).
- При применении ПГ-600® побочные действия отсутствуют из-за низких концентраций действующих веществ препарата и высочайшей очистки используемых гормонов.
- В отличие от СЖК, при применении которого часто наблюдают кистозное поражение яичника с последующей выбраковкой свиней, ПГ- 600® — самый безопасный препарат в своем классе.
- Использование ПГ-600® позволяет добиться значительного сокращения (на 5—10 дней) времени непродуктивного использования свиней, что уже окупает его применение, с последующим улучшением основных показателей воспроизводства, повышением многоплодия вследствие стимуляции "компактной" овуляции. А также проводить лечение и профилактику гипофункции яичников и послеродового анеструса у свиней.

Применяется для:

- 1. Стимуляции охоты и профилактики гипофункции яичников у ремонтных свинок.
- 2. Стимуляции охоты, лечения гипофункции яичников и профилактики послеродового анеструса у свиноматок после первого опороса.
 - 3. Стимуляции охоты у свиноматок старшего возраста.

ПГ-600° — самый эффективный и безопасный

S.O.A.-SPRAY SEX ODOUR AEROSOL

Аэрозоль с сексуальным (половым) аттрактантом для выявления течки у свиноматок и молодых свинок

- В S.O.A.-спрей используется пахучее соединение концентрированный синтетический свиной феромон, полный аналог продуцируемого хряком.
- S.O.A.-спрей в существенной степени помогает выявить наступление течки, а также время проведения осеменения естественным или искусственным путем

По сравнению с использованием провоцирующего хряка использование S.O.A.-спрей является гораздо более дешевым и менее трудоемким.

При использовании S.O.A.-спрей положительно реагируют на тест надавливания от 53% до 73% свиноматок и молодых свинок, которые при использовании хряка-пробника прореагировали на этот тест отрицательно.

Каждая непокрытая течка означает холостой простой свиноматки ±21 день. А сколько стоит непродуктивное содержание непокрытой свиноматки? Эти деньги сбережет вам S.O.A.-спрей!

Если на комплексе практикуется искусственное осеменение, применение S.O.A. является жизненно необходимым.

S.O.A. спрей экономит деньги, увеличивая эффективность свиноматок.

S.O.A.-спрей не действует на людей! Но поголовно возбуждает свиноматок!