Таблица 5- Живая масса и затраты кормов

Показатели	Группы				
Показатели	1	II	III	IV	
Живая масса, кг					
в начале опыта	320,0	328,0	325,0	322	
в конце опыта	426,2	438,4	438,5	432,2	
Валовый прирост, кг	106,2	110,4	113,5	110,2	
Среднесуточный прирост, г	885±10,4	920±9,5	946±12,5	918±11,3	
Затраты кормов на 1 ц прироста, ц	-				
корм.ед.	8,5	8,2	8,0	8,3	

Результаты контрольного убоя подопытных бычков показали, что животные I, II, IV опытных групп, потреблявшие ЭПД в количестве 5,10 и 15% по массе в составе комбикорма, по массе туш превосходили сверстников контрольной группы. Убойный выход у опытных животных повысился с 53,4 до 55,0-55,4%.

Содержание протеина в средней пробе мяса находилось на уровне 18,5-20,1%, жира 8,4-9,4 и золы 0,3-1,0%. Отношение количества триптофана к оксипролину в длиннейшей мышце спины составило 4,4-4,5 или на 7-10% выше, чем в контрольном варианте.

Заключение. Выявлено положительно влияние разных норм ЭПК (5%, 10, 15% по массе) на поедаемость кормов, переваримость и использование питательных веществ, биохимический состав крови, продуктивность животных и экономическую эффективность производства говядины. Наиболее эффективной является норма 10% ЭПК по массе в составе комбикорма.

Установлено, что оптимальной нормы ЭПК в кормлении молодняка крупного рогатого скота способствует активизации микробиологических процессов в рубце, что приводит к снижению количества аммиака на 12%, увеличению уровня общего азота на 21%, повышению переваримости сухих, органических веществ, протеина, жира и клетчатки – на 3,0-6,3%, улучшению использования азота на 3,3% от принятого.

Включение ЭПК в рационы бычков оказывает положительное влияние на окислительновосстановительные процессы в организме животных, о чем свидетельствует морфо-биохимический состав крови. При этом наблюдается повышение концентрации общего белка в сыворотке крови на 7,5%, снижение содержания мочевины - на 14,9% (Р<0,05).

Скармливание молодняку крупного рогатого скота комбикорма, обогащенного ЭПК в количестве 10% по массе, обеспечивает повышение среднесуточных приростов бычков на 7% и снижение затрат кормов на 1 ц прироста на 6%, получение дополнительной прибыли -на 11% больше контроля.

Литература. 1. Физиология пищеварения и кормления молодняка крупного рогатого скота: уч. пособие/В.М. Голушко [и др.] — Гродно, 2005.— 441 с. 2. Хохрин, С.Н. Кормпение крупного рогатого скота, овец, коз и лошадей: справочное пособие/С.Н. Хохрин. — СПб: Профикс, 2003. — 452с. 3. Эффективное использование кормов при производствее говядины/Н.А. Яцко [и др.] — Минск, 2000. — 285 с. 4. Вардеванян Л.Г. Научные и практические основы выращивания телят: моногр./Л.Г.Вардеванян. — Ереван: Самарск, 2009. — 101 с. 5. Впияние комбикормов разного состава на мясную продуктивность бычков/В. Левахин [и др.]//Мясо-молочное скотоводство. — 2007. - № 2. — С. 18-20.6. Игнатов А.В. Мясная продуктивность бычков на рационы с разным энергопротеиновым отношением/А.В. Игнатов, Г.М. Алфимцева, В.И. Агафонов// Зоотехния. — 2003. - № 2. — С. 13-15. 7. Ганущенко, О.Ф. Льносемя, продукты его переработки и их практическая ценность/О.Ф. Ганущенко// Белорусское сельское хозяйство. — 2009. - № 10. — С. 18. 8. Левахин Г.И. Влияние энергетической ценности рационов на использование протеина бычками/Г.И.Левахин, А.Г.Мещеряков// Животноводство России. — 2006.- № 5. — С. 10-13. 9. Овсянников А.И. Основы опытного дела в животноводстве/А.И. Овсянников. — Минск: Колос, 176. — 304 с.10. Викторов, П.И. Методика и организация зоотехнических опытов/П.И. Викторов, В.К. Менькин. — М.: Агропромиздат, 1991. — 112 с.11. Мальчевская, Е.Н. Оценка качества и химический анализ кормов /Е.Н. Мальчевская, Г.С. Миленькая. — Минск: Ураджай, 1981. — 143 с. 12. Петухова, Е.А. Зоотехнический анализ кормов: учебное пособие для студентов ВУЗов по спец. «Зоотехния» и «Ветеринария»/Е.А. Петухова, Р.Ф. Бессарабова, Л.Д. Халенева и др.. — 2-е изд. Доп. и перераб. — М.: Агропромиздат, 1989. — 239 с.13. Рокицкий П.Ф. Биологическая статистика/П.Ф. Рокицкий. — изд. 3-е, испр.- Минск: Вышэйшая школа, 1973. — 320 с.

Статья передана в печать 12.04.2015 г.

УДК 636.2.085.16

РУБЦОВОЕ ПИЩЕВАРЕНИЕ БЫЧКОВ ПРИ СКАРМЛИВАНИИ КОМБИКОРМОВ С СОРБЕНТОМ, ПРОБИОТИКОМ, ПРЕБИОТИКОМ, СИМБИОТИКОМ

Шнитко Е.А.

РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству», г. Жодино, Республика Беларусь

Установлено, что включение 2,5% трепела с симбиотиком в состав комбикорма КР-3 молодняку крупного рогатого скота улучшает процессы пищеварения, что обеспечивает увеличение коэффициентов переваримости питательных веществ, отложение азота, кальция, фосфора и оказывает положительное влияние на морфо-биохимический состав крови.

Found that the inclusion of 2,5% of trepel with symbiotikom in the KR -3 feed young cattle improves digestive processes, which leads to greater digestibility coefficients of nutrients deposition of nitrogen, calcium, phosphorus, and has a positive effect on the morphological and biochemical composition of blood.

Ключевые слова: бычки, комбикорма, сорбенты, пробиотики, пребиотики, симбиотики. **Keywords:** steers, mixed fodders, sorbents, probiotics, prebiotics, simbiotics.

Введение. Для организации правильного кормления животных очень важно знать особенности переваримости и взаимосвязи питательных веществ кормов, что дает возможность направлять обмен веществ в организме в сторону эффективного их использования и получения от животных максимальной продуктивности.

Для нормального протекания обменных процессов в организм животных должны поступать с кормом все необходимые питательные и минеральные вещества в определенных количествах и соотношениях.

Эффективность использования питательных веществ рациона зависит как от качества кормов, так и от процессов, которые происходят в пищеварительном тракте животного организма.

В организме животных постоянно происходит процесс синтеза и распада веществ. Данный процесс идет за счет поступления с кормом питательных веществ, которые в последующем используются организмом для построения новых и возобновления изношенных тканей [1].

Для лучшего усвоения питательных веществ из корма применяются такие добавки, как сорбенты, пробиотики, пребиотики, симбиотики и другие.

Цель работы — изучить влияние трепела и добавок пробиотического, пребиотического и симбиотического действия на показатели рубцового пищеварения и переваримость питательных веществ бычков

Материал и методы исследований. Для достижения поставленной цели проведен опыт в условиях физиологического корпуса РУП "Научно-практический центр Национальной академии наук Беларуси по животноводству". Для опыта было сформировано по принципу пар-аналогов 4 группы клинически здоровых бычков с учетом живой массы и возраста. В каждой группе находилось по 3 головы.

Исследования проводились согласно схеме опытов (таблица 1).

Таблица 1 - Схема опытов

Группы	Количество	Условия кормления		
	животных, голов			
I контрольная	3	Основной рацион (OP)+комбикорм КР-3		
II опытная	3	OP + 2,5 % трепела и пробиотик в составе комбикорма КР-3.		
III опытная	3	OP + 2,5 % трепела и пребиотик в составе комбикорма КР-3.		
IV опытная	3	OP + 2,5 % трепела и синбиотик в составе комбикорма КР-3.		

В состав основного рациона входили силосно-сенажная масса, комбикорм КР-3 2 кг. Отличия заключались в том, что в состав комбикорма входили трепел 2,5% с соответствующей добавкой для второй, третьей, четвертой опытных групп.

При проведении физиологических исследований условия содержания животных были одинаковыми. В опыте изучались следующие показатели:

- процессы рубцового пищеварения. Взятие рубцового содержимого у животных проводили спустя 2-2,5 часа после утреннего кормления через хронические фистулы рубца с помощью корнцанга. В жидкой части определяли: величину рН электропотенциометром рН 340; общий азот по Кьельдалю; аммиак микродиффузным методом в чашках Конвея; общее количество летучих жирных кислот (ЛЖК) в аппарате Маркгамма с последующим титрованием 0,1 N раствором NaOH;
- морфо биохимический состав крови путем взятия крови из яремной вены через 3 часа после утреннего кормления в конце опыта.

Учет съеденных кормов, количество выделений (кал, моча), а также отбор средних образцов (корма и его остатков, кала и мочи) для лабораторных исследований проводили по методике ВИЖ.

Результаты исследований. Потребление корма является начальной стадией сложного процесса питания животных и зависит от его вида, химического состава, сбалансированности рациона [5].

Учет поедаемости показал, что среднее фактическое потребление силосно-сенажной массы животными контрольной группы составило 9,92 кг, а аналогами опытных групп - 9,68, 9,76 и 9,77 кг, соответственно, количество концентратов по 2 кг на голову в сутки.

В результате опыта установлено, что введение трепела и добавок в состав комбикорма оказало определенное влияние на среднесуточное потребление питательных веществ бычками (таблица 2).

Таблица 2 – Потребление питательных веществ, г

Показатели	Группы				
		II	III	IV	
Сухое вещество	4632,2	4574,8	4598,6	4600,6	
Органическое вещество	4533,7	4472,7	4495,8	4497,9	
Сырой протеин	548,6	545,7	547,8	548,0	
Сырой жир	93,2	92,8	93,2	93,1	
Сырая клетчатка	507,3	501,0	504,5	504,8	
БЭВ	3384,6	3333,6	3350,3	3352	

Данные таблицы свидетельствуют о том, что значительных межгрупповых различий по потреблению питательных веществ не наблюдалось.

Важно иметь представление о рубцовом пищеварении, как о начальной стадии переваривания питательных веществ корма [4,8].

В процессе проведения исследований рубцового содержимого установлены некоторые изменения его показателей (таблица 3).

Таблица 3 - Рубцовое пищеварение

Показатели	Группы				
Показатели		II.	III	IV	
pH	7,03	6,8	6,77	6,7	
Аммиак, мг%	19,4	18,7	18,5	17,3	
ЛЖК, мг%	10,3	11,0	11,2	11,7	
Общий азот, мг%	181,8	187,8	190,57	195,1 [^]	

Все изучаемые показатели находились в пределах физиологических норм[9]. Вместе с тем следует отметить, что скармливание трепела с пробиотиком, пребиотиком и симбиотиком в составе комбикорма оптимизирует процессы рубцового пищеварения у бычков и создает более благоприятные условия для жизнедеятельности рубцовой микрофлоры.

Концентрация аммиака в химусе рубца животных второй, третьей и четвертой опытных групп была ниже по сравнению с контролем на 3,6 – 11 %, соответственно.

Отмечалось более высокое содержание ЛЖК в рубцовом химусе опытных животных по сравнению с контролем. Так во второй, третьей, четвертой опытных групп данный показатель оказался выше на 6,4 – 12% по отношению к контролю. При этом животными четвертой опытной группы с включением в рацион трепела и симбиотика показатель ЛЖК на 6% и 4,3% больше по сравнению с молодняком второй и третьей опытных групп, получавших трепел и пробиотик, трепел и пребиотик, соответственно.

Снижение уровня аммиака и увеличение количества ЛЖК в рубцовом содержимом молодняка крупного рогатого скота способствует снижению величины pH. Так, во второй и третьей опытных группах pH ниже по сравнению с контролем на 0,2 - 0,25 единицы. В четвертой опытной группе данный показатель оказался ниже на 0,3 единицы к контролю. Это в свою очередь благоприятно сказывается на развитии микрофлоры рубца.

В опытных группах показатель азота оказался выше на 2,2 – 6,8%(P<0,05), чем в контроле. На основании результатов индивидуального учета заданных кормов и их остатков, количества выделенного кала и мочи, их химического состава были рассчитаны коэффициенты переваримости питательных веществ (таблица 4).

Таблица 4 – Коэффициенты переваримости питательных веществ, %

Показатели	Группы				
			III	IV	
Сухое вещество	64,15	66,00	65,97	67,25	
Органическое вещество	68,91	70, 32	70,03	71,10	
БЭВ	73,70	75,06	74,56	75,75	
Сырой жир	57,41	59,67	60,54	61,57	
Сырой протеин	64,69	65,93	65,90	66,20	
Сырая клетчатка	43,63	45,61	46,19	47,27	

Исследованиями установлено, что коэффициенты переваримости питательных веществ рациона у подопытных животных были выше, чем в контрольной группе.

Переваримость сухого вещества в контрольной группе оказалась ниже на 1,85 п.п., 1,82 п.п., 3,1 п.п., чем во второй. третьей. четвертой опытных группах.

Опытные животные второй, третьей и четвертой опытных групп характеризовались лучшей переваримостью органического вещества и БЭВ, чем их аналоги контрольной группы на 1,41 и 1,36, 1,12 и 0,86, 2,2 и 2,05 п.п., соответственно.

Переваримость сырого жира и сырого протеина отмечена самая высокая в четвертой опытной группе и составила 61,57% и 66,2%, что выше на 4,16 и 2,3 (P<0,05) п.п., чем в контрольной.

Коэффициенты переваримости клетчатки у подопытных животных были выше на 1,98, 2,56 и 3,64 п.п., чем в контроле.

Таким образом, в результате физиологических исследований установлено, что включение в состав комбикорма трепела и добавок пробиотического, пребиотического и симбиотического действия оказывает положительное влияние на организм животных и способствует повышению переваримости питательных веществ рациона по отношению к контролю.

Изучение белкового обмена принято проводить по балансу азота, который характеризует биологическую полноценность скармливаемых животным кормовых рационов, степенью усвоения азотистых веществ корма.

Баланс азота у животных всех групп был положительным. Но имелись различия по степени его усвоения в зависимости от добавок в составе рациона (таблица 5).

Наилучший результат получен при скармливании трепела и симбиотика в рационе животных в четвертой опытной группе, что способствовало увеличению отложения азота на 4,8% (P<0,05), 1,3 %, 0,9%, по сравнению с молодняком первой, второй и третьей групп соответственно.

Лучшее усвоение азота установлено у бычков четвертой опытной группы, получавших в составе рациона трепел и симбиотик.

Таблица 5 – Баланс азота

Показатели	Группы				
	I	II	III	IV	
Принято с кормом, г	87,79	87,32	87,66	87,69	
Выделено с калом, г	30,99	29,75	29,85	29,63	
Переварено, г	56,80	57,57	57,81	58,06	
Выделено с мочой, г	18,99	18,37	18,44	18,35	
Отложено, г	37,81	39,20	39,37	39,71	
Отложено от принятого, %	43,07	44,89	44,91	45,28	

Таким образом, включение трепела и добавок в состав комбикорма молодняку обеспечило более эффективное использование азота корма, что способствует лучшему росту и увеличению живой массы тела.

Минеральные вещества относятся к незаменимым факторам питания, поскольку не синтезируются в организме, но при этом необходимы для деятельности любой клетки. В процесс усвоения в желудочно-кишечном тракте кальций и фосфор взаимно влияют друг на друга [2, 3]. В таблице 6 представлены баланс кальция и фосфора.

У животных опытных групп установлено более высокое отложение кальция в организме. Так в теле молодняка второй, третьей, четвертой групп по отношению к контрольной группе отложено больше, соответственно, на 3,2 %; 1,8%; 1,4 %. При этом животными четвертой опытной группы с включением в рацион трепела и синбиотика, усвоено кальция на 1,8% и 1,4% больше, в сравнении с молодняком второй и третьей опытных групп, получавших трепел и пробиотик, трепел и пребиотик, соответственно.

Также отмечается увеличение отложения фосфора в организме животных опытных групп на 2,5-3,4 % в сравнении с контрольной группой. При этом больше фосфора отложилось в теле животных четвертой опытной группы, в состав рациона которых входил трепел и симбиотик.

Таким образом, скармливание добавок способствовало лучшему усвоению азота, кальция и фосфора.

Таблица 6- Баланс кальция и фосфора

Паказатали		Группы				
Показатели	I		III	IV		
	Баланс кальці	1Я				
Принято с кормом, г	33,51	33,68	33,83	33,85		
Выделено с калом, г	25,29	25,31	25,41	25,31		
Выделено с мочой, г	0,30	0,33	0,35	0,36		
Отложено, г	7,92	8,04	8,07	8,18		
Отложено, %	23,6	23,9	23,9	24,2		
	Баланс фосфо	ра				
Принято с кормом, г	19,19	19,18	19,27	19,27		
Выделено с калом, г	12,41	12,23	12,28	12,26		
Выделено с мочой, г	0,11	0,11	0,12	0,11		
Отложено, г	6,67	6,84	6,87	6,90		
Отложено, %	34,8	35,7	35,7	35,8		

Кровь является одной из важнейших физиологических систем организма, которая играет значительную роль в его жизнедеятельности, обуславливая большое значение гематологических исследований. Как биологическая жидкость кровь выполняет жизненно важные функции: дыхательную, питательную, выделительную, защитную, регуляторную и механическую[7] (таблица 7).

Форменные элементы крови выполняют в организме животного важную роль.

Основная функция эритроцитов - дыхательная, которая связана со свойствами содержания в них белка гемоглобина. Гемоглобин является основным поставщиком кислорода в организме животных.

Таблица 7 – Гематологические показатели крови

Показатели	. Группы				
	I			IV	
Общий белок, г/л	77±2,91	79,67±2,85	80±4,33	82,33±3,93	
Глюкоза, ммоль/л	3,47±0,15	3,57±0,12	3,6 ±0,12	3,73±0,12	
Мочевина,ммоль/л	3,83±0,09	3,70±0,1	3,68±0,12	3,60±0,15	
Кальций, ммоль/л	3,33±0,26	3,40±0,31	3,42±0,35	3,47±0,29	
Неорганический фосфор, ммоль/л	1,80±0,06	1,85±0,13	1,87±0,12	1,90±0,1	
Эритроциты, 10 ¹² /л	5,73±0,0,15	5,97±0,12	6,00±0,17	6,13±0,18	
Гемоглобин, г/л	92,0±4,04	94,3±2,73	94,5±0,76	96,0±2,31	

По результатам нашего исследования количество эритроцитов во всех исследуемых группах находится в пределах нормы. Следует отметить, что во всех опытных группах количество эритроцитов и гемоглобина крови выше, чем в контроле. Это указывает на более интенсивное течение окислительно-востановительных процессов в организме телят.

Это самый высокий показатель в четвертой опытной группе.

Белкам принадлежит ведущая роль в обмене веществ. Они, после всасывания из кишечника в виде полипептидов и аминокислот, используются на синтез белков тканей всех органов и систем, на биосинтез ферментов, гормонов и других биологически активных соединений.

Содержание общего белка оказалось больше в опытных группах – 79,67 – 82,33 г/л, чем в контрольной – 77,33 г/л.

Одним из показателей эффективности использования белка в организме является мочевина. Данный показатель оказался выше в контрольной группе по отношению опытным.

Исходя из результатов исследования по изменениям концентрации общего белка и мочевины в крови животных, использование адсорбента в комплексе с пробиотиком, пребиотиком и симбиотиком благоприятно отразилось на азотистом обмене.

Глюкоза в организме является основным показателем углеводного обмена, который отражает соотношения между процессами ее образования и использования в тканях[6].

Содержание глюкозы в опытных группах оказалась выше во второй, третьей и четвертой опытных группах на 2,8%, 3,1% и 7% по сравнению с контролем, соответственно.

Количество изучаемых макроэлементов оказалось выше в опытных группах по сравнению с контролем.

Заключение. 1. Включение трепела и пробиотика, трепела и пребиотика, трепела и симбиотика в состав рациона молодняка крупного рогатого скота стимулируют процессы пищеварения, выразившиеся в увеличении количества ЛЖК, азота в рубцовом содержимом. 2. Использование данных добавок в кормлении бычков способствует повышению переваримости таких питательных веществ, как сухое вещество, протеин, клетчатка. 3. Наилучшие показатели получены у животны, в состав комбикорма которых входила добавка, состоящая из трепела и симбиотика.

Литература. 1. Богданов, Г. А. Кормление сельскохозяйственных животных / Г. А. Богданов. — Москва.: Колос, 1981. — 184 с. 2. Кальницкий Б.Д. Минеральные вещества в кормлении животных. Л.: Агропромиздат, 1985. — 207 с. 3. Кузнецов С. Г. Минеральное питание и критерий обеспеченности животных минеральными веществами //Сельское хозяйство за рубежом, 1976. - № 5. — С. 33-38. 4. Кондрахин, И. П. Условия, обеспечивающие нормальное рубцовое пищеварение у коров / И. П. Кондрахин // Научные труды Крымского ГАУ. Сер.Ветеринарные науки. — 2008. — № 3. — С. 61-68. 5. Левантин, Д. Л. Влияние разного уровня кормления на рост и развитие молодняка крупного рогатого скота / Д. Л. Левантин // Труды ВИЖ. — Дубровицы, 1962. — Т. 24. — С. 23-26. 6. Самохин, В. Т. Профилактика нарушений обмена микроэлементов у животных / В. Т. Самохин. — Воронежский государственный университет. — Воронеж 2003. — 135 с. 7. Симонян, Г. А. Ветеринарная гематология / Г. А. Симонян, Ф. Ф. Хисамутдинов. — М.: Колос. 1995. — 256 с. 8. Шевелев, Н. С. Особенности метаболизма и морфофункциональной структуры слизистой оболочки рубца жвачных животных / Н. С. Шевелев, А. Г. Грушкин // Сельскохозяйственная биология. — 2003. — № 6. — С. 15-22. 9. Физиологические показатели животных: справочник / Н. С. Мотузко [и др.]. — Минск. : Техноперспектива, 2008. — 95 с.

Статья передана в печать 21.04.2015 г.

УДК 636.2.087.72

ВЛИЯНИЕ СКАРМЛИВАНИЯ БЫЧКАМ ТРЕПЕЛА НА ПЕРЕВАРИМОСТЬ И ИСПОЛЬЗОВАНИЕ ПИТАТЕЛЬНЫХ ВЕЩЕСТВ КОРМОВ

Шнитко Е.А.

РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству», г. Жодино, Республика Беларусь

Установлено, что включение в состав комбикорма КР-3 2,5 % трепела бычкам положительно влияет на переваримость и использование питательных веществ кормов.

Found that the inclusion of the feed KR-3 2,5% trepel cattle's positive effect on digestibility and utilization of nutrients feed.

Ключевые слова: бычки, трепел, переваримость.

Keywords: steers, trepel, nutrient digestibility.

Введение. Постоянный рост потребности населения в продуктах питания делает необходимым увеличение поголовья сельскохозяйственных животных и повышение их продуктивности. Однако рост поголовья скота и повышение его продуктивности сдерживается ограниченными возможностями кормовой базы [7]. Кроме того, сравнительно низкая степень использования питательных веществ животными усложняет проблему организации полноценного кормления скота и увеличивает себестоимость продуктов животноводства.

Изыскание приёмов повышения эффективности использования кормов животными является одной из актуальных проблем современной физиологии питания [1].

Дополнительным резервом при создании прочной кормовой базы могут быть нетрадиционные кормовые средства, в частности, цеолитовые туфы [3, 4]. Введение их в рацион способствует повышению усвояемости питательных веществ, даёт возможность сократить расход кормов на производство продукции и увеличить продуктивность животных. Цеолитовые туфы обладают уникальными адсорбционными, ионообменными, молекулярно-ситовыми, каталитическими свойствами, которые являются своеобразными регуляторами процессов пищеварения у жвачных. Природные сорбенты способны выводить из организма животных эндо - и экзотоксины, тяжелые металлы, радионуклиды [2,3, 5].

Научной основой повышения использования питательных веществ кормов являются физиологические особенности питания сельскохозяйственных животных, опирающиеся на знании закономерностей и взаимосвязей процессов пищеварения и обмена веществ [10]. Важным шагом на пути решения проблемы в