поэтому является наиболее обоснованным и эффективным.

Литература. 1. Чернов А. В. Холангические осложнения пиометрыу кошек и собак / А. В. Чернов, Г. П. Чернова // Ветеринарный вестник. — 2004. — Санкт-Петербург. — С. 21—23. 2. Физиология и патология размножения мелких животных: Учеб. пособие / Н. И. Харенко, С. П. Хомин, В. П. Кошевой и др. — Сумы: Казацкий вал, 2005. — 554 с. 3. Стекольников А. А. Болезни собак и кошек. Комплексная диагностика и терапия. Учебное пособие / А. А. Стекольников, Р. М. Васильев, Н. В. Головачева — К.: СпецЛист, 2013. - С. 259—261.

УДК 619:618:636.085.3

КАНАШИН С.А., ШАШОК В.В., студенты

Научный руководитель - БОБРИК Д.И., канд. вет. наук, доцент

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

МОНИТОРИНГ СОДЕРЖАНИЯ МИКОТОКСИНОВ В КОРМАХ ОСНОВНЫХ СВИНОМАТОК В ПОДСОСНОМ ПЕРИОДЕ И ПРИ ПРОЯВЛЕНИИ ПОЛОВОЙ ЦИКЛИЧНОСТИ ПОСЛЕ ОТЪЕМА

Введение. Гипофункция яичников у свиноматок характеризуется нарушением развития и созревания фолликулов, их овуляции и формирования желтого тела, синтеза половых гормонов. Непосредственными причинами гипофункции яичников являются снижение синтеза и инкреции гонадотропных гормонов гипофизом, связанное с дефицитом энергии, и ослабление реактивности яичников к действию эндогенных гонадотропинов. Последнее наблюдается, как правило, при усиленном синтезе кортикостероидных гормонов при стрессовых воздействиях, а также при недостатке в организме животных тиреоидных гормонов.

В последнее время одним из сдерживающих факторов реализации генетического потенциала свиней являются природные контаминанты - микотоксины. Доказано, что даже низкий уровень контаминации микотоксинами негативно влияет на здоровье, сохранность и продуктивность сельскохозяйственных животных. К тому же эффект от совместного действия различных микотоксинов присутствующих в кормах даже в количествах не превышающих установленного предельного допустимого уровня наносит значительный вред. Предельно допустимые уровни содержания микотоксинов к комбикормах следующие: зеараленон - 1,0; охратоксин A - 0,05; T-2 токсин - 0,1; дезоксиниваленол (вомитоксин) - 1,0; афлатоксин B_1 - 0,02; сумма афлатоксинов B_1 , B_2 , G_1 , G_2 - 0,02 мг.

Материалы и методы исследований. Работа выполнена в УО ВГАВМ (кафедра акушерства, гинекологии и биотехнологии размножения животных), СГЦ «Западный» Брестского района Брестской области и лаборатории Центра здоровья животных г. Могилева.

Кормление супоросных свиноматок осуществлялось специальными комбикормами СК-1 и СК-10, содержание животных — в соответствии с типовыми технологическими решениями. ОАО СГЦ «Западный» Брестского района в течение ряда лет благополучно по острым инфекционным заболеваниям.

Результаты исследований. Проведенное нами исследование в СГЦ «Западный» комбикорма СК-10 и СК-1 на количественное содержание в них основных микотоксинов и в частности зеараленона составило: СК-1 (6 проб) супоросные афлатоксин - $5,12\pm0,12$ мкг/кг; зеараленон $627,7\pm9,23$ мкг/кг; Т-2 токсин - $65,6\pm2,40$ мкг/кг; охратоксин - $6,72\pm0,06$ мкг/кг; ДОН - $0,7\pm0,06$ мг/кг. СК-10 (5 проб) подсосные афлатоксин - $4,21\pm0,19$ мкг/кг; зеараленон - $677,5\pm16,95$ мкг/кг; Т-2 токсин - $54,3\pm2,17$ мкг/кг; охратоксин - $4,63\pm0,14$ мкг/кг; ДОН, $0,8\pm0,06$ мг/кг. СК-1 (6 проб) холостые афлатоксин - $6,31\pm0,18$ мкг/кг; зеараленон - $692,0\pm12,18$ мкг/кг; Т-2 токсин - $70,7\pm1,43$ мкг/кг; охратоксин - $7,73\pm0,15$ мкг/кг; ДОН - $0,8\pm0,05$ мг/кг.

Как мы видим по результатам проведенного исследования кормов воздействие микотоксинов на организм супоросных свиноматок, свиноматок в подсосном периоде, а также сразу после отъема до возобновления половой цикличности существенное. Факт длительного воздействия субтоксических доз микотоксинов в корме подтверждается. Вырабатываемые грибами микотоксины характеризуются гепатотоксическим, нефротоксическим и эстрогеноподобным действием. Последнее связано с наличием в кормах зеараленона и его фармакологическим сродством с 17β-эстрадиолом может объяснить его конкуренцию с эстрогеном за место его связывания со специфическим рецептором. Механизм действия зеараленона основывается на его соединении с цитозольными эстрогеновыми рецепторами, что впоследствии дает каскад последствий при инициации полового цикла у свиноматок.

Заключение. Многофакторная этиология бесплодия у свиноматок вследствие функциональных нарушений половой цикличности диктует необходимость учета воздействия субтоксических доз микотоксинов в кормах при разработке различных методов коррекции этих нарушений, в том числе и с помощью новейших комплексных кормовых адсорбентов на основе клиноптилолита и гидратированного алюмосиликата кальция.

Литература. 1. Освальд, И. Влияние микотоксинов на иммунную систему свиней // Европейский семинар по микотоксинам. Оценка воздействия микотоксинов в Европе / Европейский лекционный тур 7 февраля — 5 марта 2005. С. 69-84. 2. Тремасов, М.Я. Микотоксикозы — проблема распространения и профилактики в животноводстве // Проблемы экотоксикологического, радиационного и эпизоотологического мониторинга. Материалы Всерос. науч.-практ. конф., посвященной 45-летию ФГНУ ВНИВИ (14-15 апреля 2005 года). Казань: ФГНУ ВНИВИ, 2005. С. 41-51.

УДК633.1:631.542.4

КАРГИНА Н.М., БАКАЕВА О.Н., студенты

Научный руководитель - ДУДЕНКОВА Н.А., канд. биол. наук, доцент

ФГБОУ ВО «Мордовский государственный педагогический университет имени М.Е. Евсевьева», г. Саранск, Республика Мордовия, Российская Федерация

ВЛИЯНИЕ СВИНЦОВОЙ ИНТОКСИКАЦИИ НА МУЖСКИЕ ПОЛОВЫЕ КЛЕТКИ

Введение. Актуальность настоящего исследования обусловлена наблюдающейся в последнее время во многих развитых странах выраженной тенденции к снижению рождаемости, одной из причин которой является изменение в худшую сторону активности сперматогенеза у взрослых мужчин [1]. Несмотря на значительное наличие исследований, посвященных изучению особенностей структурной организации и функционирования мужских семенных желез, а также их подверженность различным факторам, в том числе, воздействию различных тяжелых металлов, многие вопросы остаются нерешенными, и частности, влияние их влияние на мужские половые клетки (сперматозоиды), что негативно влияет на репродуктивные качества у человека и животных [2].

Целью исследования явилось исследование жизнеспособности эпидидимальных сперматозоидов самцов белых крыс, а также их количественных и качественных изменений в норме и при свинцовой интоксикации, влияющих на их репродуктивные качества.

Материалы и методы исследований. Материалом исследования служили эпидидимальные сперматозоиды белых крыс-самцов, которые исследовались в суспензии сперматозоидов, полученной из придатка семенника.

Исследования по анализу жизнеспособности и количественных показателей сперматозоидов проводили с помощью автоматического счетчика клеток и анализатора их жизнеспособности Countess TM (Invitrogen, США). Также нами проводились исследования по изучению морфологических и морфометрических показателей эпидидимальных сперматозоидов самцов белых крыс.