УДК 619.616.993:599.4

БАКЛАНОВА А.С., магистрант

Научный руководитель - СИВКОВА Т.Н., д-р биол. наук, доцент

ФГБОУ ВО «Пермский государственный национальный исследовательский университет», г. Пермь, Российская Федерация

ЭНДОПАРАЗИТЫ РУКОКРЫЛЫХ В ПЕЩЕРАХ ПЕРМСКОГО КРАЯ

Введение. Рукокрылые активно изучаются в последнее время, однако данных об их эндопаразитах на территории Пермского края крайне мало. Ранее была описана гельминтофауна *Eptesicus nilssoni* (Keyserling, Blasius, 1839) в единичной работе [1] и обнаружение эймерий [2]. В связи с этим, вопрос о присутствии эндопаразитов летучих мышей и приуроченности их к определенному виду-хозяину на территории Пермского края остается открытым.

Материалы и методы исследований. Сбор экскрементов рукокрылых и трупного материала проводили в пещерах Пермского края в период с 2019 по 2021 год. Авторами обследовано 9 пещер карбонатного карста (Российская, Ребристая, Геологов-1, Геологов-2, Геологов-3, Кизеловская-Виашерская, Темная, Безумцев, Усьвинская-1) и 5 гипсово-ангидритных пещер (Бабиногорская, Большая Мечкинская, Монастырская, Скаутов, Октябрьская) [1]. Выборка пещер случайна.

Фекальные пробы доставляли в лабораторию паразитологии на кафедре инфекционных болезней факультета ветеринарной медицины и зоотехнии Пермского ГАТУ и исследовали комбинированным методом Г.А. Котельникова-В.М. Хренова, а также методом последовательных промываний.

Неполное гельминтологическое вскрытие проводили согласно методике К.И. Скрябина. Особое внимание уделяли содержимому грудной и брюшной полостей, органов дыхания и пищеварения, проводили компрессорную микроскопию мышц.

Просмотр препаратов проводили на микроскопе Меіјі с увеличением ×40 и ×100.

Родовую и видовую идентификацию гельминтов выполняли в соответствии с описаниями, приведенными в работах отечественных паразитологов [3].

Результаты исследований. В ходе паразитологического исследования экскрементов выявлены свободноживущие непаразитические *Nematoda spp.* (Diesing, 1861) в 46,15% случаев и клещ *Oribatida* (Dugès, 1834) – в 7,69%. Обнаружение орибатидного клеща в пробе из п. Темная, вероятно, носит случайный характер, но в целом согласуется с данными по троглофауне Палеарктики [4].

Из паразитических объектов в экскрементах представлены простейшие *Eimeria sp.* (Schneider, 1875), нематоды *Strongylata spp.* (Railliet et Henry, 1913) и цестоды родов *Hymenolepis sp.* (Weinland, 1858) и *Anoplocephala sp.* (Blanchard, 1848).

Паразитические простейшие *Eimeria sp*. обнаружены нами в 6 пробах из 13, при этом экстенсивность инвазии (ЭИ) составила 46,15%. Пробы были получены из пещер: Ребристая, Геологов-2, Кизеловская-Виашерская, Темная, Большая Мечкинская, Усьвинская-1.

Нематоды *Strongylata spp*. отмечены на стадии яйца в 2 пробах из 13 (пещеры Ребристая, Геологов-2), ЭИ = 15,38%.

Яйца цестод *Hymenolepis sp.* обнаружены нами пробах из пещер: Ребристая, Геологов-2, Кизеловская-Виашерская, Темная, Монастырская; ЭИ = 38,46%.

Яйца другой группы цестод *Anoplocephala sp*. были найдены в пробе из п. Усьвинская-1, ЭИ = 7,69%. Рукокрылые не входят в число дефинитивных хозяев рода *Anoplocephala*, литературных данных об инвазии нами не найдено.

При проведении неполного гельминтологического вскрытия 4 трупов *Eptesicus nilssoni* из п. Геологов-1 и Октябрьской во всех были обнаружены яйца *Trematoda* (Rudolphi, 1808). Родовая идентификация была затруднена деформированным состоянием яиц. ЭИ = 36,36%.

При вскрытии 3 трупов *Myotis brandtii* (Eversmann, 1845), только в 1 трупе самца из п. Геологов-3 были найдены трематоды рода *Plagiorchis* (Lühe, 1899):

- 1) *Plagiorchis muelleri* (Tkach et Sharpilo, 1990), неполовозрелые особи составили интенсивность инвазии (ИИ) = 2 экз.
 - 2) Plagiorchis koreanus (Ogata, 1938), ИИ = 4 экз.

Вскрытие 3 *Plecotus auritus* (Linnaeus, 1758) и 1 *Myotis mystacinus* (Kuhl, 1817) дало отрицательный результат.

Заключение. Из обнаруженных нами представителей кишечных эндопаразитов Strongylata spp. является наименее распространенным (ЭИ 15,38%). Наиболее распространены Hymenolepis sp. (ЭИ 38,46%) и Eimeria sp. (ЭИ 46,15%). Впервые для гельминтофауны рукокрылых Пермского края обнаружены трематоды Plagiorchis muelleri и Plagiorchis koreanus. Дальнейшие исследования помогут установить видовой состав эндопаразитов рукокрылых в условиях пещер Пермского края, географическое распространение эндопаразитов и степень инвазированности рукокрылых данного региона.

Литература. 1. Наумкин Д.В., Сивкова Т.Н. Новые данные о летучих мышах (Chiroptera: Vespertilionidae) Уральского региона // Известия Самарского науч. центра Рос. акад. наук — 2019. Т. 21, № 2(2). С. 209-213. 2. Бакланова А.С., Сивкова Т.Н. Обнаружение Еітегіа sp. в экскрементах рукокрылых в пещерах Пермского края // Организм и среда жизни: сборник материалов ІІІ Межрег. науч.-практ. конф. — Кемерово, 2020. С. 13-16. 3. Кириллов А.А., Кириллова Н.Ю., Вехник В.П. Трематоды (Trematoda) рукокрылых (Chiroptera) Среднего Поволжья // Паразитология. — 2012. Т. 46, вып. 5. С. 384-413. 4. Golovatch S.I., Palatov D.M., Turbanov I.S. [et al.] Subterranean biota of the European part of Russia: A review // Invert. Zool. — 2018. Vol.15. No.2. P.153—213.

УДК 619:616.99:615:636.5

БОНДАРЬ О.О., САЦУК А.Д., студенты

Научный руководитель - САРОКА А.М., ассистент

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

ЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ ПОРОШКА СОЦВЕТИЙ ПИЖМЫ ОБЫКНОВЕННОЙ ПРИ ЭНДОПАРАЗИТОЗАХ ПЕРЕПЕЛОВ

Введение. Перепела являются хорошим объектом для разведения, отличающимся хорошей продуктивностью и неприхотливостью. Перепела, имея всего лишь один незначительный недостаток — миниатюрный размер, обладают целым рядом преимуществ перед крупной домашней птицей. Из-за интенсивных обменных процессов у перепелов самая высокая температура тела, на 2 °C выше, чем у других видов сельскохозяйственной птицы. Благодаря этому перепела крайне редко подвергаются инфекционным заболеваниям, что позволяет содержать их, не прибегая к вакцинации. Но полностью исключить возможность их заболевания нельзя, особенно паразитарными болезнями. В литературе имеются сообщения об эймериозной инвазии перепелов с высоким уровнем интенсивности и почти 100% экстенсивности [3].

Одним из перспективных для использования в качестве лечебных средств является пижма обыкновенная (полевая рябина, дикая рябина) — *Tanacetum vulgare L*. Ценность этого растения состоит как в лекарственных свойствах (желчегонное, спазмолитическое, антигельминтное и инсектицидное), так в пищевых (пряноароматическое растение) и декоративных качествах [2].

Как сообщает Грязнов М.Ю. (2006), химический состав пижмы обыкновенной сложен и весьма разнообразен. При исследовании химического состава соцветий пижмы установлено наличие органических кислот, среди которых выявлены: щавелевая, лимонная, винная и др., обнаружено эфирное масло, содержание которого в листьях и цветочных корзинках составляет 0,2 и 1,5-3,0%, соответственно. В эфирном масле содержится туйон (бициклический терпеновый кетон) — от «следов» до 61%, при наличии большой