методическое руководство / Л.И. Подобед. — Одесса, 2000. — 205 с. 7. Почтовая, И.Г. Основные направления повышения качества молока в современных условиях / И.Г. Почтовая // Агроэкономика. — 2005. — №8. — С. 37-39. 8. Прокофьева, Г.И. Качественный состав молока коров в зависимости от уровня кормления / Г.И. Прокофьева, Ф.Н. Абрапальский // Главный зоотехник. — 2006. — №9. — С. 33-34. 9. Радчиков, В.Ф. Комбикорма и белково-витаминно-минеральные добавки для крупного рогатого скота с включением местных источников сырья: Монография / В.Ф. Радчиков [и др.] — Витебск: УО ВГАВМ, 2006. — 110 с. 10. Разумовский, Н.П. Высокопродуктивные коровы: обмен веществ и полноценное кормление / Практическое пособие для ветеринарных врачей, зооинженеров, студентов факультета ветеринарной медицины, зооинженерного факультета и слушателей ФПК / Н.П. Разумовский, В.В. Ковзов, И.Я Пахомов. — Витебск: УО ВГАВМ, 2007. — 290 с.

Статья передана в печать 22.02.2012 г.

УДК 636.2.084.:636.085.54

ФИЗИОЛОГИЧЕСКОЕ СОСТОЯНИЕ И ПРОДУКТИВНОСТЬ ТЕЛЯТ ПРИ СКАРМЛИВАНИИ КОМБИКОРМА КР-1 С ЭКСТРУДИРОВАННЫМ ПИЩЕВЫМ КОНЦЕНТРАТОМ

*Радчиков В.Ф., *Шинкарева С.Л., *Гурин В.К., **Кононенко С.И., ***Сучкова И.В.

*РУП «Научно – практический центр Национальной академии наук Беларуси по животноводству», г. Жодино **Северо-Кавказский научно-исследовательский институт животноводства, Россия ***УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины»

Установлено, что использование в рационах телят комбикорма КР-1 с включением экструдированного пищевого концентрата активизирует микробиологические процессы в рубце, что позволяет повысить среднесуточные приросты на 8% и получить дополнительную прибыль в размере 80,5 тыс. рублей за период опыта.

It is determined that usage of KR-1 mixed feed in diets for calves with extruded feed concentrate activates microbiological processes in rumen that allows to increase the average daily weight gains at 8% and obtain extra profit in the amount of 80,5 thousand rubles for experimental period.

Введение. Развитие животноводства напрямую связано с уровнем кормовой базы. Современное состояние кормопроизводства не удовлетворяет потребности животноводства. Состав рационов, их питательность далеко не всегда отвечают физиологическим потребностям животных. Это сдерживает рост их продуктивности и вызывает перерасход кормов. В затратах на производство продуктов животноводства стоимость кормов составляет 65-75%, поэтому их рациональное использование важно для снижения себестоимости продукции и увеличения объемов ее производства. Полноценное кормление оказывает решающее влияние на рост, развитие, здоровье и продуктивность сельскохозяйственных животных. Главная задача в ведении интенсивного животноводства - оптимальное использование питательных веществ кормов. Решающая роль в выполнении программ и получении запланированных объемов животноводческой продукции принадлежит комбикормовой промышленности. Сбалансированные комбикорма позволяют наиболее полно использовать генетический потенциал животных, повышать продуктивность, сокращать расход кормов [1, 2, 3, 4, 5, 6, 7].

Для того чтобы правильно и наиболее точно сбалансировать комбикорма для сельскохозяйственных животных, необходимо наличие разнообразных ингредиентов, в том числе и наиболее ценных и дорогостоящих, таких как шрот подсолнечный и соевый. В настоящее время недостаток белкового и энергетического сырья в Республике Беларусь самая актуальная проблема, решением которой заняты многие структуры.

Семена рапса и льна для Беларуси являются стратегическими важными их использование экономически выгодно. Высокий уровень жиров обуславливает максимальную энергетическую ценность льносемени масличных сортов по сравнению с зерном всех остальных культур. Льняное масло обладает широким спектром лечебно-профилактического действия, что обусловлено особенностями его химического состава. Так, например, в 1кг льносемян содержится от 15,5 до 19,0 МДж обменной энергии. По уровню лизина белок льносемени уступает соевому, по уровню остальных незаменимых аминокислот близок к одному из самых полноценных протеинов - белку куриного яйца [8].

Учитывая вышесказанное, сотрудниками РУП «Витебский зональный институт сельского хозяйства НАН Беларуси» совместно с РДУПП «Осиповичский хлебозавод» разработана технология получения экструдированного пищевого концентрата (ЭПК) на основе льносемени, представляющего собой высокотехнологический сыпучий продукт, содержащий до 28% жира, 16-18% белка, 5 и 10% клетчатки и крахмала соответственно. В 1кг ЭПК содержится 1,54 корм. ед. и 15,6 МДж обменной энергии, 266 г жира, 70 г сахара.

Однако исследований по отработке оптимальных норм ввода ЭПК в состав комбикорма КР-1 и эффективности скармливания его в рационах крупного рогатого скота при выращивании на мясо в Республике Беларусь не проводилось.

Целью нашей работы - изучить эффективность скармливания комбикормов КР-1 с разными нормами ввода ЭПК в рационах телят.

Материал и методы исследований. Экспериментальная часть работы выполнена в условиях УСПКС «Надеждино» Толочинского р-на Витебской области, опытные комбикорма КР-1 приготовлены в ОАО «Оршанский комбинат хлебопродуктов».

Для проведения физиологических и научно-хозяйственных опытов отобраны бычки черно-пестрой породы по принципу пар-аналогов с учетом возраста и живой массы. Условия проведения опытов были одинаковыми: кормление двукратное, поение из автопоилок, содержание беспривязное.

Исследования проведены по схеме (табл. 1).

Взятие рубцового содержимого у подопытных бычков в физиологических опытах проводили спустя 2,5-3 часа после утреннего кормления через хронические фистулы рубца. В образцах проб рубцовой жидкости, отфильтрованной через 4 слоя марли, определяли: концентрацию ионов водорода - электропотенциометром рН-340; общий и небелковый азот - методом Къельдаля (2004), белковый азот - по разнице между общим и небелковым; аммиак - микродиффузным методом в чашках Конвея (И. П. Кондрахин, 2004); количество инфузорий - путем подсчета в 4-сетчатой камере Горяева при разведении формалином 1:4; общее количество летучих жирных кислот (ЛЖК) - методом паровой дистилляции в аппарате Маркгамма (Н. В. Курилов и др., 1987).

Таблица 1- Схема опытов

таолица 1- охсма	CHBHOB				
	Количество	Живая масса	Продолжительность		
Группы	животных,	в начале опы-	опыта, дн.	Особенности кормления	
	голов	та, кг			
l		Φ	изиологический опыт		
І-контрольная	3	51	30	Основной рацион (ОР): ЗЦМ, сено + комби-	
<u> </u>				корм КР-1	
II-опытная	3	52	30	ОР + КР-1 с 5% вводом ЭПК	
III-опытная	3	50	30	ОР + КР-1 с 10% вводом ЭПК	
IV-опытная	3	51	30	ОР + КР-1 с 15% вводом ЭПК	
Научно-хозяйственный опыт					
I-контрольная	18	50	45	ОР – ЗЦМ, сено + комбикорм КР-1	
II-опытная	18	51	45	ОР + КР-1 с 5% вводом ЭПК	
III -опытная	18	52	45	ОР + КР-1 с 10% вводом ЭПК	
IV-опытная	18	50	45	ОР + КР-1 с 15% вводом ЭПК	

Кровь для исследований брали из яремной вены спустя 3-3,5 часа после утреннего кормления и стабилизировали гепарином (2,0-2,5 ед/мл). Исследованиям подвергались как цельная кровь, так и ее сыворотка.

Морфологический состав крови (лейкоциты, эритроциты и гемоглобин) определяли анализатором «Medonic CA 620».

Биохимический состав сыворотки крови определялся с помощью анализатора «Cormay Lumen». Минеральный состав - на атомно-абсорбционном спектрофотометре AAS-3.

Научно-хозяйственные опыты проводились на группах животных, подобранных по принципу аналогов, с учетом породы, возраста и живой массы.

Основной рацион контрольной и опытных групп по набору кормов был одинаковым, сбалансированным по нормам ВАСХНИЛ (1985).

При проведении научно-хозяйственных опытов изучали следующие показатели: поедаемость кормов - путем проведения ежедекадных контрольных кормлений в течение двух смежных суток; динамику живой массы животных - путем индивидуального взвешивания утром, до кормления, при постановке на опыт и в конце научно-хозяйственного опыта; состояние здоровья опытных животных - путем ежедневного визуального осмотра и физиолого-биохимического анализа крови.

Химический анализ кормов и продуктов обмена проводили в лаборатории биохимических анализов РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству» по схеме общего зоотехнического анализа: первоначальная, гигроскопичная и общая влага (ГОСТ 13496.3-92); общий азот, сырая клетчатка, сырой жир, сырая зола (ГОСТ 13496.4-93; 13496.2-91; 13492.15-97; 26226-95); кальций, фосфор (ГОСТ 26570-95; 26657-97); сухое и органическое вещество, БЭВ, каротин (Е. Н. Мальчевская, Г. С. Миленькая, 1981; В. Н. Петухова и др., 1989).

Цифровой материал научно-хозяйственных и физиологических опытов обработан методом вариационной статистики. Статистическая обработка результатов анализа проведена по методу Стьюдента, на персональном компьютере, с использованием пакета статистики Microsoft Office Excel.

При оценке анализируемого материала использовали значения критерия достоверности (td). Вероятность различий считалась достоверной при P<0,05. В работе приняты следующие обозначения уровня значимости (P): *P<0,05;**P<0,01.

Результаты исследований. Состав и питательная ценность комбикормов КР-1, которые использованы в научно-хозяйственном опыте, приведены в таблице 2.

Таблица 2 – Состав комбикормов КР-1

Waysanauzu W	Рецепты					
Компоненты, %	1	2	3	4		
Ячмень	25,1	23,1	20,1	16,1		
Пшеница	20,0	20,0	20,0	20,0		
Тритикале	10,0	10,0	10,0	10,0		
Шрот соевый	16,0	16,0	16,0	16,0		
Шрот подсолнечный	15,0	15,0	15,0	15,0		
ЗЦМ «Биолак»	10,0	7,0	5,0	4,0		
ЭПК	-	5	10	15		
Фосфат дефторированный	1,0	1,0	1,0	1,0		
Мел	1,4	1,4	1,4	1,4		
Соль	0,5	0,5	0,5	0,5		
Премикс ПКР-1	1,0	1,0	1,0	1,0		

В 1 кг содержится:				
обменной энергии, МДж	11,3	11,7	12,1	12,5
кормовых единиц	1,13	1,23	1,33	1,43
сухого вещества, г	888	891	894	896
сырого протеина, г	216,6	215,3	214,1	210,2
сырого жира, г	20,7	46,2	71,8	97,3
сырой клетчатки, г	54,9	52,9	51,0	49,3
кальция, г	10,2	10,2	10,2	10,2
фосфора, г	6,8	6,9	7,0	7,0

Различия в составе комбикормов заключаются в том, что в рецепты № 2, № 3, № 4 введен экструдированный пищевой концентрат в количестве 5, 10 и 15% по массе взамен части ячменя и ЗЦМ.

Изучение поедаемости кормов в научно-хозяйственном опыте показало, что использование в составе рационов бычков опытных комбикормов с включением разных норм ЭПК оказало определенное влияние на потребление корма.

Потребление комбикорма KP-1 составило в опытных группах 1,2-1,3 кг, сена - 0,6-0,65 кг, 3ЦМ - 0,36-0,38 кг. В суточном рационе содержалось сухого вещества 2,35-2,52 кг, обменной энергии - 29,2-30,7 МДж, кормовых единиц - 2,8-2,91, сырого протеина - 538-556 г, сахара - 318-348 г, кальция - 23,1-23,9 г, фосфора - 15,8-16,3 г (табл. 3).

Таблица 3 – Характеристика рубцового содержимого

Показатели	Группы				
Показатели		II		IV	
pH	6,98+0,06	6,93+0,19	6,65+0,13	6,88+0,09	
Общий азот, мг%	144,6+5,2	162,9+7,1	189,4+15,1	175,0+10,4	
Аммиак, мг%	27,8+0,3	28,3+0,1	25,5+0,5*	28,7+1,0	
ЛЖК, ммоль/100 мл	8,67+0,27	8,79+0,62	9,93+0,19*	8,97+0,18	
Инфузории, тыс.мл	349,7+12,3	362,3+4,3	391,3+19,2	387,5+14,4	

Изучение процессов рубцового пищеварения показало, что во всех группах реакция среды содержимого рубца (рН) находилась практически на одинаковом уровне, с колебаниями в пределах 6,65-6,98.

В рубцовой жидкости бычков опытных групп, потреблявших в составе комбикормов ЭПК в количестве 5, 10 и 15% по массе, отмечено увеличение содержания азота на 10.5%, 25 и 11%.

Обогащение комбикорма КР-1 ЭПК в разном количестве способствовало снижению количества аммиака в рубце опытных животных на 9,0-11,5%, что свидетельствует о снижении расщепления протеина и улучшении его использования микроорганизмами для синтеза белка своего тела, причем в III группе разница оказалась достоверной.

Повышение уровня ЛЖК в рубцовой жидкости животных опытных групп свидетельствует о более интенсивном течении гидролиза углеводов кормов под влиянием экструдированного пищевого концентрата (ЭПК).

В физиологическом опыте наилучшей переваримостью практически всех питательных веществ отличались животные, получавшие с комбикормом КР-1 экструдированный пищевой концентрат в количестве 10% по массе (табл. 4)

Таблица 4 – Коэффициенты переваримости питательных веществ, %

Показатели	Группы				
Показатели	I	II	III	IV	
Сухое вещество	51,3+1,4	55,0+2,2	61,0+2,1*	56,0+1,1*	
Органическое вещество	55,6+2,0	55,6+2,0	62,3+0,5*	58,7+1,3	
Протеин	55,0+1,4	57,9+2,5	61,8+1,3*	57,8+1,2	
Жир	53,7+0,8	57,6+0,4*	58,9+0,6	54,9+1,6	
Клетчатка	5,4+0,6	52,3+1,5	56,2+0,7*	52,8+0,6	
БЭВ	68,0+1,4	70,4+1,3	71,2+0,7	75,2+2,0	

Так, использование в упомянутой норме ЭПК позволило повысить переваримость сухого вещества на 9,5%, органического вещества – на 6,7, протеина – на 6,8, жира – на 5, клетчатки – на 5,9%.

При использовании ЭПК в количестве 5 и 15% по массе в составе комбикорма переваримость питательных веществ увеличилась в меньшей степени.

Изучение баланса азота показало, что он был положительным у животных всех групп.

В физиологическом опыте животные съедали разное количество кормов, в связи с чем поступление азота в организм оказалось различным. Так, молодняк II, III и IV опытных групп потреблял его соответственно на 0,5, 2,5 и 2,3% больше, чем контрольной. Отмеченное увеличение поступления азота с кормом и меньшее выделение его с калом способствовало повышению обеспеченности молодняка III группы переваренным азотом на 7,9 г (Р<0.05) и на 3,3 и 3,9 г — бычков II и IV групп соответственно.

Большее выделение азота с мочой молодняком опытных групп привело к увеличению различий по отложению азота в теле до 0,8; 3,3 и 1,2 г соответственно во II, III и IV группах. Причем разница между бычками III группы и контролем оказалась достоверной.

Полученные различия определенным образом сказались и на использовании азота организмом животных. Так, молодняк III группы использовал его на 29,1% от принятого, что на 2,8% выше, чем в контрольной группе (P<0,05).

. Бычки II и IV групп лучше использовали азот от принятого - на 0,8 и 0,5% соответственно (Р>0,05).

Для изучения влияния разных норм ЭПК на физиологическое состояние животных были изучены гематологические показатели.

Исследованиями установлено, что ЭПК, вводимые в комбикорма опытных животных, не оказали значительного влияния на морфо-биохимические показатели крови. Все они находились в пределах физиологической нормы. Вместе с тем, установлены определенные межгрупповые различия по некоторым из них. Так, в крови телят, получавших ЭПК в количестве 10% по массе в составе комбикорма, отмечено содержание белка на 7,5% выше, чем в контрольной группе (P<0,05).

В крови животных, получавших добавку в количестве 5 и 15% по массе в составе комбикорма, выявлено повышение концентрации эритроцитов относительно молодняка І группы на 2,5%.

Введение в рацион бычков ЭПК способствовало снижению уровня мочевины в крови опытных животных на 7,7-16,2% (P<0,05).

В содержании остальных изучаемых компонентов крови каких-либо значительных межгрупповых различий не установлено.

Как показывают результаты опытов по изучению интенсивности роста животных (табл. 5), в связи с применением в их рационах комбикормов, содержащих разное количество ЭПК, наиболее целесообразно использовать его в объеме 10% по массе.

Таблица 5 – Изменение живой массы и затраты кормов

Показатели	Группы					
Показатели		II		IV		
Живая масса, кг:						
в начале опыта	50	51	52	50		
в конце опыта	84,4	86,8	89,2	86,2		
Валовый прирост, кг	34,4	35,8	37,2	36,2		
Среднесуточный прирост, г	764,0+12,2	796,0+16,4	826,0+9,9	804,0+20,5		
Затраты кормов на 1 ц прироста, ц	3.89	3.77	3,50	3.68		
корм. ед.	5,69	5,77	3,30	3,00		

Введение добавки ЭПК в объме 10% по массе в состав комбикорма КР-1 позволило получить среднесуточный прирост молодняка 826 г, что на 8% выше, чем в контроле (Р<0,05).

Введение в состав комбикорма КР-1 ЭПК в количестве 5 и 15% оказало меньшее ростостимулирующее действие на животных.

Животные, получавшие комбикорма с ЭПК в количестве 10% по массе, затрачивали кормов меньше на 8%.

Себестоимость 1 ц прироста снизилась в III опытной группе на 11%. При использовании иных норм добавки этот показатель снижался в меньшей степени.

Снижение себестоимости прироста бычков, в состав комбикорма которых вводилась добавка в количестве 10% по массе, позволило получить дополнительно 12% прибыли в расчете на голову за опыт по сравнению с контрольным вариантом.

Заключение. Установлено положительное влияние разных норм ввода ЭПК в состав комбикормов на поедаемость кормов, рубцовое пищеварение, переваримость и использование питательных веществ, биохимический состав крови, продуктивность и экономическую эффективность.

Использование оптимальной нормы ввода ЭПК в кормлении молодняка крупного рогатого скота способствует активизации микробных процессов в рубце, что приводит к снижению количества аммиака на 11,5%, увеличению уровня общего азота на 25%, повышению переваримости сухих, органических веществ, протеина, жира и клетчатки – на 5,0 -9,5%, улучшению использования азота на 3,3% от принятого.

Включение ЭПК в рационы бычков оказывает положительное влияние на окислительно-восстановительные процессы в организме животных, о чем свидетельствует морфо-биохимический состав крови. При этом наблюдается повышение концентрации общего белка в сыворотке крови на 7,5%, снижение содержания мочевины на 16,2% (P<0,05).

Скармливание молодняку крупного рогатого скота комбикорма, обогащенного ЭПК в количестве 10% по массе, способствует повышению среднесуточных приростов бычков на 8% и снижению затрат кормов на 1 ц прироста на 9%, получению дополнительной прибыли в размере 80,5 тыс. руб. за опыт.

Литература. 1. Кормление сельскохозяйственных животных: учебное пособие/В.К.Пестис [и др.]: под ред. В.К. Пестиса. — Минск: ИВЦ Минфина, 2009. — 540 с. 2. Дурст, Л. Кормление сельскохозяйственных животных/Л. Дурст, М. Виттман, пер. с немец.:под ред. Г.В.Проваторова. — Винница: Новая книга, 1983. — 480 с. 3. Макарцев, Н.Г. Кормление сельскохозяйственных животных: учебное пособие/Н.Г. Макарцев. — 2-е изд., перераб. и доп. — Калуга:Изд-во науч. лит-ры Н.Ф. Бочкаревой, 2007. — 405 с. 4. Попков, Н.А. Корма и биологически активные вещества: справочник/Н.А. Попков, В.И. Фисинин, Н.А. Егоров. — Минск: Бел. наука, 2005. — 881 с. 5. Физиология пищеварения и кормления молодняка крупного рогатого скота/А.М. Лапотко [и др.] — Минск, 2005. — 220 с. 6. Хохрин, С.Н. Кормление крупного рогатого скота, овец. коз и лошадей/С.Н. Хохрин. — СПб: Профикс, 2003. — 456 с. 7. Эффективное использование кормов при производстве говядины/Н.А. Яцко [и др.] — Минск, 2000. — 285 с. 8. Ганущенко, О.Ф. Льносемя, продукты его переработки и их практическая ценность/О.Ф. Ганущенко// Белорусское сельское хозяйство. — 2009. - № 10. — С. 18. 9. Овсянников А.И. Основы опытного дела в животноводстве/А.И. Овсянников. — Минск: Колос, 176. — 304 с. 10. Викторов, П.И. Методика и организация зоотехнических опытов/П.И. Викторов, В.К. Менькин. — М.: Агропромиздат, 1991. — 112 с.

Статья передана в печать 27.02.2012 г.