ИЗУЧЕНИЕ ВЛИЯНИЯ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ КОРМОВОЙ ДОБАВКИ «ВАТЕР ТРИТ® ЖИДКИЙ» НА МИКРОБИОЦЕНОЗ КИШ ЕЧНИКА МОЛОДНЯКА СВИНЕЙ

М.А. ГЛАСКОВИЧ, Л.А. ШАМСУДДИН УО «Белорусская государственная сельскохозяйственная академия»

Введение. В последние годы усилия ученых направлены на создание специальных биологически активных добавок к рационам, обладающих определенными биологически активными свойствами и способных в значительной степени снизить вред, наносимый организму современным типом кормления и неблагоприятным условиям содержания молодняка свиней. Сегодня животноводство активно развивается, в связи, с чем все большее внимание уделяется разработке качественных добавок к кормам. Особенно важно полноценное и сбалансированное питание для поросят. Современный рынок препаратов питания животных изобилует ассортиментом. Чего только не предлагают компании-производители. Это и различные премиксы, и комбикорма, и смеси для обеззараживания пищи и многое другое. Большинство препаратов разработано с учетом породы и возраста животного, что делает выбор немного легче [1, 2].

Как и любая другая отрасль животноводства, свиноводство основывается на определенных программах кормления, позволяющих обеспечить оптимальный режим откорма свиней, начиная с первых дней жизни. В своей практике свиноводы используют кормовые биологически активные добавки, которые обладают высокоэффективными лечебными свойствами и удовлетворяют потребности животных в важнейших элементах питания – белках, витаминах, макро- и микроэлементах [3, 4, 5].

В настоящее время большие потери в животноводстве связаны не только с организационно-экономическими трудностями текущего периода. Здоровье животных зависит от ряда факторов (содержание, кормление, программа прививок), особенно выражены в определенные периоды технологического цикла (ранние этапы жизни у новорожденных, в частности отъем молодняка от матерей и т.д.) и, что наиболее важно, от состояния иммунной системы. При иммунодефицитах чаще всего наблюдаются: осложнения за счет других болезней; увеличение конверсии корма; вторичная инфекция; снижение продуктивности; высокая выбраковка и гибель животного [2, 3].

Хорошо известна важная роль нормальной микробиоты пищевари-

тельного тракта в целом, и кишечника в частности, в создании резистентности макроорганизма к колонизации патогенными и условнопатогенными микроорганизмами, действию токсинов, ферментов защиты и агрессии, формировании иммунного гомеостаза и витаминного баланса, участии в метаболических и ферментативных процессах, антимутагенной активности. В свою очередь, микробиота кишечника является индикатором состояния макроорганизма и целый ряд факторов приводит к изменению ее качественного и количественного состава. При снижении резистентности макроорганизма представители микробиоценоза кишечника могут проявлять свою патогенность [5, 6].

Цель работы – определение степени влияния кормовой добавки «Ватер Трит® жидкий» на микробиоценоз желудочно-кишечного тракта поросят на доращивании в возрасте 30-80 дней.

Материалы и методы исследования. На кафедре микробиологии и вирусологии УО «ВГАВМ» был проведен научный опыт по изучению эффективности использования кормовой добавки «Ватер Трит® жидкий» на микробиологический состав кишечной микрофлоры свиней. Для проведения опыта на базе свиноводческого комплекса ОАО Агрокомбинат «Восход» Могилевского района были сформированы по принципу аналогов 4 группы свиней по 20 голов. Вводили препарат в основной рацион двумя курсами по 14 дней с перерывом 2 недели между ними. Кормовую добавку «Ватер Трит® жидкий» поросята на доращивании опытных групп получали вместе с сывороткой по схеме, представленной в таблице 1.

Таблица 1 – Схема изучения кормовой добавки «Ватер Трит ${\mathbb R}$ жидкий» на молодняк свиней

Схема вы- пойки «Ватер	Контрольная	1.0	шы и нормы ввода кормовой добавки «Ватер Трит® жидкий»		
Трит® жид- кий»	группа	2 опытная	3 опытная	4 опытная	
1-я неделя		OP + кормовая добавка 1,2 мл/гол.	OP + кормовая добавка 2,4 мл/гол.	OP + кормо- вая добавка 3,6 мл/гол.	
2-я неделя	OP	OP + кормовая добавка 1,8 мл/гол.	OP + кормовая добавка 3,6 мл/гол.	OP + кормо- вая добавка 5,4 мл/гол.	
3-я неделя	(основной рацион)	OP + кормовая добавка 3,6 мл/гол.	OP + кормовая добавка 7,2 мл/гол.	OP + кормо- вая добавка 10,8 мл/гол	
4-я неделя		OP + кормовая добавка 4,2 мл/гол.	OP + кормовая добавка 8,4 мл/гол.	OP + кормо- вая добавка 12,6 мл/гол.	

Исследования кишечного микробиоценоза молодняка свиней проводи-

ли методом количественного группового анализа: содержимое толстого отдела кишечника. Количество жизнеспособных клеток бактерий в 1г содержимого кишечника (число колониеобразующих единиц - КОЕ) устанавливали методом предельных разведений при высеве на соответствующие агаризованные питательные среды: для выделения бифидобактерий использовали Bifidobacterium agar; для выделения лактобактерий — среду MRS, в которую добавляли раствор сорбиновой кислоты для придания селективных свойств; для выделения грамотрицательных неспорообразующих факультативно-анаэробных бактерий использовали среду Эндо.

Инкубацию анаэробной микрофлоры проводили в микроанаэростате при +37 °C в течение 48 часов; кишечной палочки – при +37 °C в течение 18-24 часов. Ориентировочную идентификацию бифидо- и лактобактерий проводили микроскопическим методом (окраска мазка по Граму), который позволяет оценить морфологию клеток. Идентификацию кишечной палочки проводили по морфолого-культуральным и биохимическим свойствам. Далее вели подсчет колоний и выражали в КОЕ/г.

Преимущество предлагаемой разработки — исследовать степень влияния кормовой добавки «Ватер Трит® жидкий» на микробиоценоз желудочно-кишечного тракта свиней. В таблице 2 представлены результаты микробиологического состава кишечной микрофлоры поросят на доращивании при введении в рацион кормовой добавки «Ватер Трит® жидкий».

Представленные в таблице 2 данные свидетельствуют о том, что изученная кормовая добавка «Ватер Трит® жидкий» равномерно заселяет желудочно-кишечный тракт свиней и оказывает стимулирующее влияние на формирование лакто-и бифидофлоры в желудочно-кишечном тракте, угнетает условно-патогенную микрофлору что приводит к заселению желудочно-кишечного тракта бактериями кишечно-паратифозной группы.

При уменьшении в пищеварительном тракте лактофлоры и бифидофлоры у свиней снижается способность к детоксикации пищевых токсинов, нарушается процессы регуляции ферментного, гормонального, витаминного и минерального обмена, что обуславливает иммунодефицитное их состояние. Введение в рацион кормовой добавки «Ватер Трит® жидкий» во всех опытных группах вызывает в кишечном тракте достоверные изменения лакто- и бифидобактерий $6,89\times10^9\pm1,673\times10^{9^*}$ lg KOE/г (3-я опытная группа) в сравнении с контролем $4,21\times10^8\pm1,244\times10^8$ lg KOE/г.

У молодняка свиней всех трех опытных групп, по сравнению с контролем меньше (P<0,001) меньше выделялось бактерий кишечнопаратифозной группы, к которым относятся эшерихии, сальмонеллы, протей, стафилококки, бациллы и т.д., а лакто-и бифидобактерий – больше (P<0,01-0,001). Полученные нами данные свидетельствуют о том, что в контрольной группе происходит значительная колонизация кишечника молодняка свиней транзиторными микроорганизмами на фоне снижения содержания представителей облигатной микрофлоры.

Таблица 2 – Динамика микробиоценоза кишечника поросят на доращивании при введении в рацион кормовой добавки «Ватер Трит® жидкий»

Группы	Тиогликолевая сре-	МПА (содержание	Среда Эндо (содер-			
	да (содержание лак-	аэробных микроор-	жание бактерий ки-			
	то- и бифидобакте-	ганизмов)	шечно-паратифозной			
	рий)		группы)			
1 неделя (30-36 день)						
1-я группа –						
контроль	$4,20\times10^8\pm0,317\times10^8$	$12,42\times10^9\pm0,241\times10^9$	$6,19\times10^9\pm0,821\times10^9$			
2-я опытная	$4,19\times10^8\pm0,543\times10^8$	$12,28\times10^{8}\pm0,359\times10^{8}$	$5,88\times10^9\pm0,496\times10^9$			
3-я опытная	$4,28\times10^{8}\pm0,445\times10^{8}$	$12,29\times10^{8}\pm1,117\times10^{8}$	$5,81\times10^9\pm0,585\times10^9$			
4-я опытная	$4,23\times10^{8}\pm0,357\times10^{8}\pm$	$12,31\times10^{8}\pm1,104\times10^{8}$	$5,75 \times 10^9 \pm 0,481 \times 10^9$			
2 неделя (37-43 день)						
1-я группа –						
контроль	$4,31\times10^{8}\pm1,284\times10^{8}$	$15,03\times10^9\pm1,104\times10^9$	$8,74\times10^{9}\pm0,976\times10^{9}$			
2-я опытная	$5,09\times10^8\pm0,560\times10^8$	$9,15\times10^{8}\pm1,134\times10^{8}$	$6,76\times10^9\pm0,873\times10^9$			
3-я опытная	$5,93\times10^{8}\pm0,583\times10^{8}$	$8,28\times10^8\pm1,128\times10^8$	$6,21\times10^9\pm0,865\times10^9$			
4-я опытная	$5,38\times10^{8}\pm0,573\times10^{8}$	$9,07\times10^8\pm1,109\times10^8$	$6,45\times10^9\pm0,866\times10^9$			
3 неделя (58-64 день)						
1-я группа –						
контроль	$4,79\times10^{8}\pm1,347\times10^{8}$	$18,89 \times 10^{10} \pm 0,795 \times 10^{10}$	$12,78\times10^{9}\pm0,234\times10^{9}$			
2-я опытная	$6,17\times10^8\pm1,294\times10^8$	$10,15\times10^9\pm0,944\times10^{9*}$	$8,84\times10^{8}\pm0,765\times10^{8}$			
3-я опытная	$6,32\times10^{8}\pm1,487\times10^{8+}$	$9,87\times10^9\pm0,896\times10^{9*}$	$8,15 \times 10^8 \pm 0,597 \times 10^8$			
4-я опытная	$6,24\times10^{8}\pm1,476\times10^{8}$	$10,09\times10^9\pm0,731\times10^9$	$8,32 \times 10^8 \pm 0,675 \times 10^8$			
4 неделя (65-71 день)						
1-я группа –						
контроль	$4,21\times10^{8}\pm1,244\times10^{8}$	$19,54 \times 10^{10} \pm 1,243 \times 10^{10}$	$14,05 \times 10^9 \pm 1,343 \times 10^9$			
2-я опытная	$6,47\times10^9\pm1,347\times10^9$	$12,12\times10^8\pm1,197\times10^8$	$8,53 \times 10^8 \pm 1,271 \times 10^8$			
3-я опытная	$6,89\times10^{9}\pm1,673\times10^{9}$	$10,21\times10^{8}\pm1,324\times10^{8}$	$8,34\times10^{8}\pm1,391\times10^{8*}$			
4-я опытная	$6,52\times10^9\pm1,642\times10^{9*}$	$11,49\times10^8\pm1,226\times10^8$	$8,42\times10^{8}\pm1,323\times10^{8*}$			

Примечание: *P<0,001; +P<0,01

При скармливании поросятам на доращивании кормовой добавки «Ватер Трит® жидкий» создается в пищеварительном тракте благоприятные условия для усиления размножения лакто-и бифидобактерий и одновременно-достоверного (P<0,001) угнетения размножения энтеропатогенных бактерий – $8,34\times10^8\pm1,391\times10^8^*$ lg KOE/г (3-я опытная группа) по сравнению с контролем $14,05\times10^9\pm1,343\times10^9$ lg KOE/г, что оказывает положительное влияние на уровень его пищеварительной деятельности, и, как следствие, на результаты выращивания.

Заключение. Изучение межмикробных взаимодействий в составе микробиоценоза кишечника молодняка свиней показало, что при введе-

нии в рацион кормовой добавки «Ватер Трит® жидкий» происходит компенсированные качественные и количественные сдвиги кишечного микробоценоза. Полученные данные расширяют и углубляют представления о влиянии кормовой добавки «Ватер Трит® жидкий» на межмикробные взаимодействия в кишечнике молодняка свиней.

Экономичность, доступность, удобство и простота применения, высокая биологическая активность кормовой добавки «Ватер Трит® жидкий» позволяет рекомендовать ее производству в качестве корректора иммуногенеза и естественного микробиоценоза кишечника молодняка свиней.

Литература

- 1. Авылов, Ч. К. Влияние стресс-факторов на резистентность организма свиней / Ч. Авылов // Ветеринария сельскохозяйственных животных. 2006. № 6. С. 46-47.
 - 2. Бакшеев, А. Ф. Иммунология свиньи / А. Ф. Бакшеев. Новосибирск, 2003. 143 с.
- 3. Алимов, А. М. Желудочно-кишечные болезни поросят и их профилактика / А. М. Алимов // Ветеринария сельскохозяйственных животных. 2008. -№3. С. 25.
- 4. Бовкун, Г. Ф. Нормобиоценоз и дисбактериоз молодняка / Г. Ф. Бовкун, Е. П. Ващекин, Н. И. Малик // Ветеринария сельскохозяйственных животных. 2008. № 3. С. 12-15.
- 5. Гласкович, М. А. Как обойтись без кормовых антибиотиков? / М. А. Гласкович, Л. В. Шульга // Первые Международные Беккеровские чтения : сборник научных трудов по материалам научно-практической конференции (Волгоград, 27-29 мая 2010 г.). Волгоград, 2010. Ч. 2 С. 90-92.
- 6. Гласкович, М. А. Влияние кормовых антибиотиков на кишечный микробиоценоз сельскохозяйственных животных: краткий аналитический обзор / М. А. Гласкович, Е. А. Капитонова // Ученые записки учреждения образования "Витебская государственная академия ветеринарной медицины". Витебск, 2010. Т. 46, вып. 1, ч. 1. С. 194-197.

УДК 636.4.087.72

ТРЕПЕЛ В КАЧЕСТВЕ НАПОЛНИТЕЛЯ ПРЕМИКСОВ ДЛЯ СВИНЕЙ

В.М. ГОЛУШКО, А.В. ГОЛУШКО, А.И. КОЗИНЕЦ, С.А. ЛИНКЕВИЧ, О.Г. ГОЛУШКО

РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству»

Введение. Премиксы представляют собой однородные смеси измельчённых до необходимой крупности микродобавок и наполнителя для ввода их в состав комбикормов. Премиксы должны обладать биологическим действием, то есть обеспечивать организм животных требуемым количеством макро- (за счёт содержания их в наполнителе) и микроэлементов, витаминов и других биологически активных веществ. Важным свойством премиксов является пролонгирующее действие, то есть способность к более полному усвоению макро- и микроэлементов на протяжении всего