Литература. 1. Асрутдинова, Р. А. Результаты применения некоторых иммуномодуляторов для повышения резистентности телят / Р. А. Асрутдинова // Ученые записки Казанской государственной академии ветеринарной медицины им. Н. Э. Баумана. - 2012. - Т. 211. - С. 214-218. 2. Барсуков, А. А. Повышение неспецифической резистентности макроорганизма К условно-патогенным . микроорганизмам нуклеинатом натрия / А. А. Барсуков. В. М. Земсков. В. Г. Соболев // Антибиотики. – 1978. – № 6. – С. 520-526. 3. Натрия нуклеинат – эффективный иммуномодулятор / С. Воронин, А. Гуменюк, А. Ханис, Ю. Фёдоров // Животноводство России. - 2015. - № 7. - С. 21. 4. Иммунный статус телят и его коррекция при использовании различных схем введения натрия нуклеината / Ю. Н. Федоров [и др.] // Вестник Алтайского государственного аграрного университета. - 2014. - № 4 (114). - С. Исследование эффективности способов различных колострального иммунитета у новорожденных телят / О. В. Харитонова, Л. В. Харитонов, В. И. Великанов, А. В. Кляпнев // Проблемы биологии продуктивных животных. - 2018. - № 2. - С. 81–93.

УДК 636.2.082.32.35:612.017.11:612.664.35:615.37

НЕСПЕЦИФИЧЕСКАЯ РЕЗИСТЕНТНОСТЬ И ОБМЕН ВЕЩЕСТВ У ТЕЛЯТ ПОСЛЕ ПРИМЕНЕНИЯ РИБОТАНА КОРОВАМ ПЕРЕД ОТЕЛОМ

Кляпнев А.В., Великанов В.И.

ФГБОУ ВО «Нижегородская государственная сельскохозяйственная академия», г. Нижний Новгород, Российская Федерация

Введение. Проблема выращивания здорового молодняка сельскохозяйственных животных является актуальной в настоящее время. Особое внимание нужно уделять новорожденным животным. Кормление теленка всегда начинают с молозива. Оно богато белками, жирами, минералами, витаминами. Для защиты организма в период развития иммунной системы телятам с молозивом передаются иммуноглобулины матери, которые создают пассивный колостральный иммунитет. При этом содержание иммуноглобулинов в молозиве может быть в несколько раз выше, чем в крови коров-матерей. С молозивом телятам поступают и лейкоциты [3, 4, 6].

Повысить уровень колострального иммунитета у телят возможно за счет воздействия на организм коров за несколько дней до отела.

Было исследовано влияние дипептида тимогена, синэстрола-2%, рекомбинантного интерлейкина-2, полиоксидония на физиологическое состояние и становление неспецифической резистентности у новорожденных телят [1, 2, 7].

Целью исследования стало изучение влияния риботана на неспецифическую резистентность, колостральный иммунитет и обмен веществ телят после его парентерального введения глубокостельным коровам.

Иммуномодулирующий препарат Риботан в качестве действующего вещества содержит смесь низкомолекулярных пептидов и фрагментов дрожжевой РНК. Препарат относится к группе иммуномодулирующих препаратов. Он обладает широким спектром биологической активности: ускоряет процессы регенерации, стимулирует факторы естественной резистентности, лейкопоэз, миграцию и кооперацию Т- и В-лимфоцитов, фагоцитарную активность макрофагов и нейтрофилов. Иммуномодулятор повышает резистентность организма, как при профилактическом. так при терапевтическом применении, И Ускоряет антитоксическим действием. формирование поствакцинального

иммунитета, повышая его напряженность и продолжительность. Увеличивает иммунологическую эффективность вакцин, повышает протективные свойства сыворотки крови и устойчивость иммунизированных животных к заражению патогенными микроорганизмами. Риботан повышает содержание лизоцима, пропердина, уровень антител, индуцирует синтез интерферона. Риботан по степени воздействия на организм относится к 4 классу опасности - веществам малоопасным согласно ГОСТ 12.1.007 (Инструкция по применению иммуномодулятора Риботан, утвержденная Россельхознадзором 09 февраля 2016 года. Номер регистрационного удостоверения 77-3-12.12-3586 №ПВР-3-1.0/00324).

Материалы и методы исследований. Научно-хозяйственный опыт выполнен в осенне-зимний период на молочно-товарной ферме сельскохозяйственного производственного кооператива «Нижегородец» Дальнеконстантиновского района Нижегородской области. Объектами исследования стали, отобранные по принципу парных аналогов, 10 глубокостельных коров черно-пестрой породы, которые были разделены на 2 группы (контрольная и опытная) по 5 животных в каждой, и полученные от них новорожденные телята. Коровам опытной группы за 3–9 дней перед отёлом вводили риботан в дозе 5 мл внутримышечно, однократно. Коровам контрольной группы вводили 0,9% раствор натрия хлорида в дозе 5 мл внутримышечно, однократно.

Большая часть гамма-глобулинов переходит из крови в молозиво и накапливается там в период за 3-9 суток до отела [5].

Новорожденному теленку, сразу после появления сосательного рефлекса, выпаивали молозиво, полученное от его коровы-матери. Телята с 2-дневного возраста содержались вне помещений — в боксах-домиках (на ферме применяется «холодный метод выращивания»). Проводилось клиническое наблюдение за подопытными животными. Массу новорожденных телят определяли в день рождения, в конце первого и второго месяца жизни.

Пробы крови у телят брали из ярёмной вены на 2-е, 10-е сутки жизни. Проводили общий осмотр новорожденных телят, исследовали температуру, пульс, частоту дыхательных движений на 2, 3, 10 и 30 сутки жизни, также фиксировали время появления сосательного рефлекса и уверенной позы стояния.

В ходе опыта исследовали содержание жира, белка, лактозы, сухих веществ, количество соматических клеток, уровень общих иммуноглобулинов, титруемую кислотность молозива коров контрольной и опытной групп. Отбиралась средняя проба молозива объемом 100 мл из 1-го удоя.

Исследования крови и молозива проводили с применением следующих методов:

- общий анализ крови (определение уровня гемоглобина, гематокрита, СОЭ, подсчет количества эритроцитов, лейкоцитов, тромбоцитов) на гематологическом анализаторе HTI Micro-CC-20 Plus, USA;
- выведение лейкоцитарной формулы путем подсчёта в мазках крови лейкоцитов разных видов, окрашенных по Романовскому-Гимза;
 - определение общего белка на анализаторе ICUBIO iMagic-V7;
- определение белковых фракций крови (альбумин, α-глобулины, β-глобулины) на анализаторе Minicap, Sebia;
- определение бактерицидной активности сыворотки крови фотонефелометрическим методом в модификации О.В. Смирновой и Т.А. Кузьминой (1966) с применением тест-культуры Escherichia coli (штамм О111) (В.Я. Саруханов, Н.Н. Исамов, В.Н. Кудрявцев, 2006; А.А. Малев, Р.Я. Гильмутдинов, 2009);
- определение лизоцимной активности сыворотки крови фотоэлектроколориметрическим методом в модификации отдела зоогигиены

Украинского научно-исследовательского института экспериментальной ветеринарии с использованием тест культуры Micrococcus lysodeikticus;

- определение фагоцитарной активности нейтрофилов с использованием тест-культуры Staphylococcus albus;
- содержание Т-лимфоцитов методом спонтанного розеткообразования с эритроцитами барана (E-POK) и В-лимфоцитов методом розеткообразования с эритроцитами быка в системе EAC-POK (В.Г.Скопичев, Н.Н.Максимюк, 2009);
- содержание иммунных глобулинов (Ig) в молозиве (молоке) с натрия сульфитом (И.П. Кондрахин и соавт., 2004); определение титруемой кислотности молозива по Тернеру (И.П. Кондрахин и соавт., 2004); уровень жира, белка, лактозы, сухих веществ, соматических клеток молозива на анализаторе Bentley.

Полученный экспериментальный материал обработан методом вариационной статистики по Стентону Гланцу (1999), с помощью сервисных программ и статистических функций программы MicrosoftExcel операционной системы Windows 7. Для выявления статистически значимых различий использован критерий Стьюдента. Результаты рассматривались как достоверные, начиная со значения Р≤0,05. Анализы выполнялись на кафедре «Анатомия, хирургия и внутренние незаразные болезни», в межкафедральной лаборатории ФГБОУ ВО Нижегородская ГСХА, лаборатории «Гемохелп» г. Нижний Новгород, лаборатории селекционного контроля качества молока ООО «Племфарм-НН».

Результаты исследований. В ходе эксперимента от клинически-здоровых коров подопытных групп было получено молозиво хорошего качества, однородной консистенции, желто-кремового цвета, у коров опытной группы оно отличалось более густой консистенцией и насыщенным цветом. Молозиво первого удоя коров опытной группы имело более высокую титруемую кислотность, содержало больше соматических клеток и иммуноглобулинов.

Установлено, что молозиво 1-го удоя коров опытной группы содержало большее количество иммуноглобулинов соответственно на 30,9 %, что говорит о повышении образования этих белков в организме, вследствие усиления иммунореактивности под действием риботана (P<0,05). Количество соматических клеток у подопытных животных находилось в пределах физиологической нормы, но у коров опытной группы их было больше на 89,6% (P<0,05).

На протяжении эксперимента проводилась оценка физиологического статуса организма телят путем проведения общего клинического осмотра, измерения температуры тела, частоты пульса и дыхания у телят на 2-е, 3-и, 10-е и 30-е сутки после рождения, а также определения времени появления уверенной позы стояния и появления сосательного рефлекса в минутах.

Телята подопытных групп имели среднее телосложение. Волосяной покров животных опытной группы более густой, блестящий, отличался от контрольных животных. Инъецированный стельным коровам за 3-9 дней до отела риботан оказал благоприятный эффект на физиологический статус новорожденных телят. Температура тела у телят опытной группы на 2-е и 3-и сутки жизни была выше температуры тела контрольных животных соответственно на 1,0 и 0,5 °C, что может быть обусловлено более интенсивными окислительными процессами в организме (Р>0,05). Повышение температуры у телят контрольной группы в 30-суточном возрасте, видимо, обусловлено возникновением случаев диспепсии. Появление уверенной позы стояния и сосательного рефлекса у животных опытной группы реализовались на 11,2 и 13,6 минуты раньше (Р<0,05). На протяжении эксперимента такие животные были более активными и подвижными. Телята опытной группы имели более высокий среднесуточный прирост массы тела. Через месяц после рождения прирост массы тела телят опытной группы был на 19,6% выше контроля, в конце второго месяца на 26,9%.

По уровню гемоглобина и количеству эритроцитов существенных различий между контролем и опытом не было выявлено на протяжении эксперимента. С момента рождения количество эритроцитов и уровень гемоглобина крови подопытных телят понижалось до 30 суточного возраста и находилось на нижней границе нормы. Это связано с ростом животных и потребностью увеличения поступления препаратов железа в их организм.

Количество лейкоцитов у подопытных животных повышалось до 10 суточного возраста, затем понижалось к 30 суткам. У телят опытной группы на 2-е сутки жизни наблюдалось большее количество лейкоцитов на 69%, на 10-е сутки жизни - на 42%, на 30-е сутки - на 31,5% по сравнению с контрольной группой (P<0,05).

Абсолютное и относительное количество Т-лимфоцитов на протяжении эксперимента было выше у телят опытной группы соответственно на 3,8-11,5 и 47-72,8% (Р<0,05). Таким образом, применение препарата «Риботан» глубокостельным коровам за 3-9 дней до отела оказывает влияние на клеточный иммунитет и ускоряет пролиферацию Т-лимфоцитов у полученных новорожденных телят.

Относительное количество В-лимфоцитов в крови телят опытной группы на протяжении эксперимента было ниже либо сходным по сравнению с контрольной группой, а абсолютное количество было более высоким.

Белковый состав плазмы крови взаимосвязан с физиологическим состоянием и резистентностью организма, а также играет важную роль в метаболических процессах. Так уровень общего белка в крови является высокоинформативным показателем, характеризующим гомеостатическое состояние организма. Установлено, что на 2-е сутки жизни у телят опытной группы был выше уровень общего белка сыворотки крови на 20,4%, в большей степени за счет гаммаглобулинов и бета-глобулинов, их уровень был выше соответственно на 66,7 и 30,3% (P<0,05). У телят опытной группы в течение десяти суток после рождения отмечалась тенденция к повышению уровня мочевины в крови, что может говорить о более интенсивном всасывании белков в желудочно-кишечном тракте.

На 10-е сутки жизни уровень общего белка у телят подопытных групп незначительно снизился за счет фракции альфа- и гамма-глобулинов, уровень бета-глобулинов и альбумина с возрастом незначительно повысился. Концентрация общего белка, альбуминов и гамма-глобулинов была выше у телят опытной группы соответственно на 18,2; 9,5 и 58,3% (Р<0,05). На 30-е сутки направленность изменений сохранилась.

На 30-е сутки жизни наблюдалось понижение уровня мочевины на 7,07% (P>0,05) в опытной группе, указывая на то, что аминокислоты меньше подвергались окислению и использовались для образования белков. Также у телят опытной группы был выше и уровень глюкозы в крови, что может говорить о более интенсивном углеводном обмене (P>0,05).

Бактерицидная активность сыворотки крови, отражающая суммарное действие клеточного и гуморального факторов защиты была выше у телят опытной группы на 2-е и 10-е сутки жизни на 24,7 и 21,4% по сравнению с контрольной группой (Р<0,05). Важным показателем неспецифической резистентности является активность лизоцима – фермента, способного лизировать живые и мертвые клетки. Лизоцимная активность повысилась у телят опытной группы на 2-е, 10-е сутки жизни на 25,0 и 19,1 % в сравнении с контрольной группой (Р<0,05). Лизоцим образуется активированными макрофагами либо выделяется после дегрануляции полиморфноядерных нейтрофилов.

Неспецифическая форма клеточного иммунитета, проявляется фагоцитарной активностью сегментоядерных нейтрофилов. Нарастание этого показателя у телят опытной группы связано с активацией внутриклеточных систем фагоцитов,

повышением опсонических способностей иммуноглобулинов и нарастанием активности системы комплемента. На 2-е и 10-е сутки жизни показатель этой активности у телят опытной группы превышал величину в контроле соответственно на 17,6 и 14,7%. Фагоцитарный индекс также был выше у телят опытной группы на 2-е, 10-е и 30-е сутки жизни соответственно на 44,6, 25 и 24%.

Заключение. Парентеральное однократное введение риботана в дозе 5 мл на животное за 3-9 дней до предполагаемого отёла способствовало накоплению в молочной железе коров иммуноглобулинов и других иммуногенных факторов, выделению их в составе молозива. Молозиво 1-го удоя коров опытной группы имело более высокую титруемую кислотность в сравнении с контролем. Содержание иммуноглобулинов было существенно выше у животных опытной группы по сравнению с контролем. Данные процессы положительным образом отразились на морфологических и иммунобиохимических показателях крови, а также на физиологическом состоянии новорождённых животных на 2-е, 10-е и 30-е сутки после рождения. Телята опытной группы были более крепкими и активными, среднесуточный прирост массы тела за 2 месяца выращивания был выше в опытной группе. Таким образом, однократное введение риботана глубокостельным коровам в условиях опыта оказало положительное влияние на физиологическое состояние новорождённых телят, способствовало повышению у них колострального иммунитета и неспецифической резистентности.

Литература. 1. Морфологические и физиолого-биохимические показатели крови новорожденных телят под действием препарата полиоксидоний / В. И. Великанов [и др.] // Ученые записки Казанской государственной академии ветеринарной медицины им. Н. Э. Баумана. - 2016. - Т. 228. - № 4. - С. 8-11. 2. Великанов, В. И. Формирование колострального иммунитета и становление неспецифической резистентности у новорождённых телят под действием дипептида тимогена / В. И. Великанов, А. В. Кляпнев, Л. В. Харитонов // Иппология и ветеринария. - 2016. - № 3 (21). - С. 36-42. 3. Карпуть, И. М. Иммунология и иммунопатология болезней молодняка / И. М. Карпуть. — Минск : Ураджай, 1993. - 288 с. 4. Молозиво. Иммуноглобулины молозива. Качество и нормы скармливания молозива новорожденным телятам : методические рекомендации / В. В. Малашко [и др.] ; Гродненский гос. аграрный ун-т. — Гродно, 2009. — 73 с. 5. Самбуров, Н. В. Повышение биологических свойств молозива / Н. В. Самбуров // Вестник Курской государственной сельскохозяйственной академии. — 2008. — № 2. — С. 28—29. б. Самбуров, Н. В. Молозиво коров его состав и биологические свойства / Н. В. Самбуров, И. Л. Палаус // Вестник Курской государственной сельскохозяйственной академии. -2014. - № 4. - С. 59-61. 7. Исследование эффективности различных способов повышения колострального иммунитета у новорожденных телят / О. В. Харитонова, Л. В. Харитонов, В. И. Великанов, А. В. Кляпнев // Проблемы биологии продуктивных животных. - 2018. - № 2. - С. 81-93.

УДК 619:616.24-002

ЭФФЕКТИВНОСТЬ ПРЕПАРАТА «ОТИБИОВЕТ» ПРИ ЛЕЧЕНИИ ОТИТОВ У СОБАК И КОШЕК

Ковзов В.В., Маковский Е.Г., Ковзов И.В.

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Введение. Одна из актуальных проблем для врачей ветеринарной медицины и владельцев собак и кошек в настоящее время — это поиск комбинированных,