рота- и коронавирусам -80%, вирусу диареи -40%

Определение антител у телят 1,5-2 месяцев свидетельствует о переболевании животных.

При проведении анализа установлено, что в КСУП «Воложинское» Воложинского района Минской области МТК «Поморщина» практически все телята переболели пневмоэнтеритами, о чем свидетельствует высокий уровень сероположительных животных и высокий уровень антител. Так, процент сероположительных животны ко всем вирусам был от 75 до 100% при среднем титре антител от 3.75 до $6.0 \log_2$ — процент сероположительных телят к вирусам ИРТ и коронавирусам составил 75%, к вирусам диареи, парагриппа-3, рота-и РС-вирусам — 100%.

Но в ОАО «Агро-Дубинское» положение несколько иное — в основном переболела только небольшая часть животных. Так, средний титр антител был от 2,6 до 4,6 \log_2 , а процент сероположительных животных был от 16,6 до 66,7%; к вирусу ИРТ инфицированность составила 16,6%, ротавирус — 33,3%, вирусу диареи, корона- и РС-вирусам — 50%, вирусу $\Pi\Gamma$ -3 — 66,7%.

Заключение. Таким образом, по уровню антител можно судить о степени и тяжести заболеваемости телят в различных хозяйствах.

Литература. 1. Диагностика инфекционных болезней сельскохозяйственных животных: бактериальные заболевания: монография / А.А. Шевченко [и др.]. - Краснодар: КубГАУ, 2018. - 701 с. 2. Диагностика инфекционных болезней сельскохозяйственных животных: вирусные заболевания: монография / А.А. Шевченко [и др.]. - Краснодар: КубГАУ, 2018. - 485 с. 3. Красочко, И.А. Вирусные инфекции домашних и диких жвачных животных / И.А. Красочко - Витебск, Издательство УО ВГАВМ, 2004. - 268 с. 4. Машеро, В.А. Этиологическая структура возбудителей респираторных и желудочно-кишечных инфекций телят в Республике Беларусь / В.А. Машеро, П.А. Красочко // Ученые записки учреждения образования «Витебская ордена «Знак почета» государственная академия ветеринарной медицины». 2007. Т. 43. № 2. -С. 83-86 5. Оценка эпизоотической ситуации по инфекционным энтеритам телят в хозяйствах Витебской области / П.А.Красочко [и др.]. - Ветеринарный журнал Беларуси. 2018. №2 (9). - С. 35-39.

УДК:616.34-008.87

ЛЮЙ ЧЖИГО, магистрант (Китай)

Научный руководитель - СУББОТИНА И.А., канд. вет. наук, доцент

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

ЭФФЕКТИВНОСТЬ ОРАЛЬНОЙ АНТИРАБИЧЕСКОЙ ВАКЦИНАЦИИ

Введение. Доказано, что оральная вакцинация является эффективным методом борьбы с бешенством и в странах Западной Европы приняли стратегию искоренения данной смертельной болезни. После освобождения от классического бешенства в Странах Западной Европы программу оральной вакцинации применили к странам Восточной Европы [1, 2].

Необходимость проведения оральной вакцинации диких плотоядных и обязательной вакцинации домашних питомцев доказана и обоснована в Республике Беларусь. Ежегодно регистрируются случаи нападения диких плотоядных (в первую очередь — лис, реже волков и других диких животных) на сельскохозяйственных животных, домашних питомцев, на людей. Ежегодно регистрируются случаи заболевания домашних питомцев и с.-х. животных бешенством. Помимо проведения оральной вакцинации, необходимо проводить и контроль ее эффективности [3, 4]. Исходя из актуальности данного вопроса, целью нашей работы явилось изучение эффективности оральной антирабической вакцинации диких плотоядных.

Материалы и методы исследований. Работа проводилась в ЛДУ «Витебская областная ветеринарная лаборатория». Была составлена схема исследований для проведения

оценки эффективности антирабической оральной вакцинации против бешенства диких плотоядных. Были проведены непосредственные исследования по определению тетрациклиновой метки и обнаружению антигена вируса. Материал был получен от индикаторных для Республики Беларусь животных: лиса, волк. Всего было отобрано и происследовано 2173 спилов зубов, 200 срезов головного мозга, 100 сывороток крови. В местах обитания животных использовалась оральная антирабическая вакцина-приманка «Рабивит».

В результате изучения подходов и мероприятий, проводимых ветеринарной службой Республики Беларусь в ходе оценки эффективности антирабической вакцинации была составлена схема мероприятий:

1.Отбор образцов для мониторинга эффективности оральной вакцинации. В лабораторию отправляют спил нижней челюсти с клыками и резцами, биологическую жидкость животного (кровь, транссудат, торакальная жидкость) в замороженном виде.

- 2. Определение поедаемости оральной антирабической вакцины. Исследуемый материал: нижняя челюсть с зубами. Принцип метода: выявление маркера (тетрациклина), содержащегося в приманках с антирабической вакциной. Маркер выявляют флуоресцентным методом в зубах и костях нижней челюсти.
- 3. Отбор патологического материала для выявления антигена методом ИФА: продолговатый мозг, мозжечок (наиболее важные), аммоновы рога, кора головного мозга (дополнительные). Методы консервации: в замороженном или охлажденном виде (рекомендуется); в забуференном физиологическом растворе с формалином (10% формалина, получают менее качественные результаты, недоступны методы выделения вируса); в забуференном физиологическом растворе с глицерином (50% глицерина, получают менее качественные результаты).
- 4. Метод флуоресцирующих антител (М Φ A) для обнаружения комплекса антигенантитело.
- 5. Выделение вируса на мышах (биопроба). Метод выявляет только активный вирус бешенства, требует подтверждения гибели мышей методом МФА.
- 6. Оценка антирабического иммунитета с целью определения эффективности оральной вакцинации с использованием реакции нейтрализации, определяет количество вируснейтрализующих антител («золотой стандарт»).
- 7. Оценка уровня заболеваемости. Оральную антирабическую вакцинацию прекращают в случае отсутствия случаев бешенства не менее двух лет.

Результаты исследований. В результате проведенных нами исследований по оценке поедаемости приманок с антирабической вакциной тетрациклиновая метка была обнаружена в 60,2% проб из исследуемой партии проб. Положительная реакция на бешенство (заболеваемость) была поставлена в 13% от всех исследуемых проб патологического материала павших животных, подозреваемых в заболевании бешенством, с помощью МФА. С этим же положительным в МФА материале были получены положительные биопробы. Специфические антитела (защищенность) были обнаружены в 56% проб.

Заключение. Полученные данные говорят о достаточно высокой эффективности проводимой оральной антирабической вакцинации, но регистрируемые случаи бешенства среди животных указывают на необходимость корректировки схемы проводимой вакцинации и на необходимость увеличения площадей проводимой вакцинации.

Литература. 1. Ефанова, Л.И. Защитные механизмы организма, иммунодиагностика и иммунопрофилактика инфекционных болезней животных / Л.И. Ефанова, Е.Т. Сайдулдин. - Воронеж, 2004, С. 322-323. 2. Ветеринарная энциклопедия: в 2 т. Т. 1. А — К / С.С. Абрамов [и др.]; ред. Т.В. Белова [и др.]. — Минск: Беларуская Энцыклапедыя імя П. Броукі, 2013. — 461 с. 3. Мовсесянц А.А., Олефир Ю.В. Современные проблемы вакцинопрофилактики бешенства. БИОпрепараты. Профилактика, диагностика, лечение. 2019;19(1):10-16. https://doi.org/10.30895/2221-996X-2019-19-1-10-16. 4. Никифоров В.В., Авдеева М.Г. Бешенство. Актуальные вопросы. Эпидемиология и инфекционные болезни. 2017; 22(6): 295-

УДК 615.322(043.3)+615.281.8(043.3)

МОРОЗ Д.Н., магистрант; ФЕЛИВ С.В., студент

Научный руководитель - КРАСОЧКО П.А., д-р вет. наук, д-р биол. наук, профессор

УО «Витебская ордена «Знак Почёта» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

ОЦЕНКА ПРОТИВОВИРУСНОЙ АКТИВНОСТИ ВОДНОЙ СУСПЕНЗИИ СОСНОВОЙ ЖИВИПЫ

Введение. Инфекционные болезни по частоте и распространенности, а также ущербу, наносимому здоровью животных, продолжают занимать одно из ведущих мест в структуре общей их патологии. Этиотропные лекарственные средства, действующие на определенный этап репродукции вирусов, наряду с вакцинопрофилактикой, интерфероном и его индукторами играют важную роль в борьбе с вирусными инфекциями.

В ветеринарной практике в настоящее время используется сравнительно небольшое количество противовирусных препаратов. Активность известных противовирусных препаратов, как правило, ограничена возбудителями одной инфекции или даже их частью.

Из многочисленных лекарственных средств, применяемых в мировой практике, лечебные препараты из растений составляют более 30%. Однако, среди противовирусных лекарственных средств не так уж много препаратов растительного происхождения.

Действующими началами в извлечениях из растений являются многочисленные вещества (лектины, терпены, соединения полифенольного комплекса). Причем лекарственные растения содержат, как правило, десятки химических групп одновременно. В связи с этим природа противовирусных свойств продуктов растительного происхождения может заключаться именно в их многокомпонентности. Особое внимание в связи с этим привлекает исследование противовирусных свойств композиций из растительного сырья. Из индивидуальных веществ растительного происхождения значительное внимание в последнее время уделяется высшим тритерпеноидам в связи с их мультимедикаментозным действием.

Одним из перспективных объектов для конструирования противовирусных препаратов, является сосновая живица, в состав которой входят тритерпеноиды.

Целью настоящих исследований явилась оценка противовирусной активности водной суспензии сосновой живицы в отношении вируса диареи крупного рогатого скота и ротавируса крупного рогатого скота.

Материалы и методы исследований. Исследования проводились в условиях кафедры эпизоотологии и инфекционных болезней УО ВГАВМ и отдела вирусных инфекций РУП «Институт экспериментальной ветеринарии им. С.Н. Вышелесского». Водную суспензию сосновой живицы получали путем ультразвуковой экстракции биологически активных компонентов с использованием гидрофильного детергента.

Для постановки экспериментов готовили двукратные разведение водной суспензии живицы в поддерживающей питательной среде (по 500 мкл) от 1:2 до 1:4096. Затем в лунки 24-луночных планшет с разведениями препаратов внесли по 500 мкл каждого вируса (рабочая доза -100 ТЦД50/0,1 мл), тщательно перемешали и поместили на 1 час в термостат при температуре плюс $37\pm0,5$ °C в атмосфере с объемной долей углекислого газа $5,0\pm0,5\%$ и относительной влажностью $75\pm5\%$ для контакта вируса с препаратом. Для каждого вируса при этом использовали отдельный планшет. Через 48 часов инкубации клеток MDBK из 96-луночных планшет с хорошо развитым монослоем встряхиванием удаляли питательную среду и вносили в них приготовленные разведения препарата с вирусом в объеме 200 мкл на каждую лунку. Для каждого разведения использовали по 4 лунки.

Далее во все лунки 96-луночных планшет вносили по 100 мкл поддерживающей питательной среды. Планшеты инкубировали в течение 96 ч в термостате при температуре