- 4. Самуйленко, А. Я. Инновационные биологически безопасные препараты для ветеринарии / А. Я. Самуйленко, Т. А. Скотникова, Л. А. Неминущая [и др.] // Вестн. Рос. акад. с.-х. наук. 2014. № 2. С. 45–46.
 - 5. ГОСТ Р 53438-2009. Сыворотка молочная. Технические условия.
- 6. Пищиков, Г. Б. Ценность молочной сыворотки и перспективы ее использования / Г. Б. Пищиков, Е. А. Зенкова // Молодежь и наука. -2017. -№ 3. C. 43.
- 7. Красочко, П.А. Изучение эффективности использования бесклеточного пробиотика «ЛАКТИМЕТ» на телятах / П. А. Красочко, Ю. В. Ломако, И. А. Красочко [и др.] // Вет. медицина. -2008. -№ 91. С. 253-257.
- 8. Курочкин, Д. В. Бесклеточный пробиотик «БАЦИНИЛ» для профилактики и лечения желудочно-кишечных заболеваний молодняка сельскохозяйственных животных / Д. В. Курочкин, Ю. В. Ломако, П. А. Красочко // Ученые записки УО ВГАВМ. 2011. Т. 47, № 1. С. 197–198.

УДК 619:616.34-002

ИЗУЧЕНИЕ ПРОТИВОВИРУСНОЙ АКТИВНОСТИ ВОДНОЙ СУСПЕНЗИИ ЕЛОВОЙ ЖИВИЦЫ

П. А. Красочко, доктор ветеринарных наук, доктор биологических наук, профессор¹

Д. Н. Мороз, магистр ветеринарных наук, аспирант¹

Д. С. Борисовец, кандидат ветеринарных наук, доцент²

Т. А. Зуйкевич, кандидат сельскохозяйственных наук²

М. А. Понаськов, магистр ветеринарных наук¹

О. Н. Горелова, соискатель¹

¹Витебская ордена «Знак Почета» государственная академия ветеринарной медицины, г. Витебск, Республика Беларусь ²Институт экспериментальной ветеринарии им. С. Н. Вышелесского, г. Минск, Республика Беларусь

Резюме. Приведены результаты изучения противовирусной активности водной суспензии еловой живицы. Установлено, что разведение суспензии до 10^{-4} приводит к существенному угнетению репродукции вируса трансмиссивного гастероэнтерита свиней в культуре клеток СПЭВ.

Ключевые слова: еловая живица, противовирусная активность, вирус трансмиссивного гастроэнтерита, культура клеток.

Summary. The results of the study of the antiviral activity of the water suspension of spruce belly are presented. It was established that the dilution of suspensia up to 10^{-4} at the time leads to a significant inhibition of reproduction of the transmissible gastsroenteritis of pigs virus in the culture of SPEV cells.

Keywords: spruce, antiviral activity, virus of transmissible gastroenteritis, cell culture.

Введение. Одними из основных причин снижения продуктивности и повышенного выбытия животных являются возбудители инфекционных болезней. Особенно это относится к факторным болезням. К ним относятся как биотические (вирусы, бактерии, хламидии, простейшие и т. д.), так и абиотические факторы (технология содержания, кормление, экология и т. д.). В этой связи вопрос борьбы с инфекционными болезнями животных в современных условиях является одним из важных направлений исследований по разработке мер борьбы [1, 2, 7, 9].

В Республике Беларусь леса являются одним из основных возобновляемых природных ресурсов и важнейших национальных богатств. Леса и лесные ресурсы имеют большое значение для устойчивого социально-экономического развития страны, обеспечения ее экономической, энергетической, экологической и продовольственной безопасности. По ряду клю-

чевых показателей, характеризующих лесной фонд (лесистость территории, площадь лесов и запас растущей древесины в пересчете на одного жителя), Беларусь входит в первую десятку лесных государств Европы.

По состоянию на 1 января 2022 г. покрытые лесом земли составляют 9,7 млн га. Породный состав лесов страны разнообразный, но преобладающими породами являются хвойные и мягколиственные. В настоящее время сосна по площади занимает 50,2 покрытых лесом земель, ель -9,2, береза -23,2, ольха черная -8,5 % [5].

Ель обыкновенная, или европейская, является второй по хозяйственному значению среди хвойных пород в Республике Беларусь. Ель представляет собой вечнозеленое древесное растение высотой до 30 м (изредка до 50 м). Крона в виде конуса, образуется поникающими или распростертыми ветвями, расположенными мутовчато. Обычная продолжительность жизни ели обыкновенной — 250—300 лет [6]. Лечебное сырье из ели активно используется в народной медицине.

Лечебные свойства ели обусловлены химическими веществами, входящими в ее состав (эфирные масла, дубильные вещества, смолы, минеральные соли, витамины (C, E, B_3 или PP, K), каротиноиды, микроэлементы (железо, марганец, хром, медь) и аминокислоты).

Ель оказывает разностороннее позитивное влияние на организм: стимулирует иммунную и нервную систему; ускоряет заживления ран, в том числе ожогов, язв; стимулирует работу сердечно-сосудистой системы; благоприятно влияет на работу желудочно-кишечного тракта.

Лечебное сырье из ели (еловую хвою, шишки, смолу, реже кору, ветви и древесину) используют для изготовления различных препаратов.

Такие препараты используют для лечения животных, больных:

болезнями верхних дыхательных путей вирусной и бактериальной этиологии;

болезнями нижних дыхательных путей (пневмония, туберкулез);

воспалениями выделительной системы и заболеваниями почек;

заболеваниями желудочно-кишечного тракта;

кожными болезнями грибковой и бактериальной этиологии;

ринитами, фарингитами, гайморитами, ларинготрахеитами.

Смола хвойных деревьев (живица, или терпентин) представляет собой бесцветное вязкое вещество с характерным хвойным запахом. Терпентин содержится в смоляных ходах, пронизывающих все части дерева, и выделяется при его повреждении. Живица является активным природным антиоксидантам, обладающий антимикробным, противовоспалительным, иммуностимулирующим и ранозаживляющим действием [3–6, 8, 9].

На кафедре эпизоотологии и инфекционных болезней УО ВГАВМ и ООО «Данко» разработана технология получения водной суспензии еловой живицы, которую извлекают путем экстракции с использованием гидрофильных растворителей при воздействии ультразвука различной мощности и частоты. Одним из показателей биологических свойств водной суспензии живицы является оценка противовирусной активности.

Целью исследований являлось изучение противовирусной активности водной суспензии еловой живицы.

Материалы и методы. Исследования проводились в условиях УО «Витебская государственная академия ветеринарной медицины», РУП «Институт экспериментальной ветеринарии им. С. Н. Вышелесского» в соответствии с Методическими рекомендациями «Исследование вирулицидных свойств дизинфицирующих и антисептических препаратов» 04.04.96 г. № 67-9610.

В качестве тест-вируса использован вирус трансмиссивного гастроэнтерита свиней (ТГС). Вирус ТГС (семейство *Coronaviridae*, род *Coronavirus*) – РНК-содержащий вирус, относится к группе альфа-коронавирусов, представлен однонитевой РНК. Использован штамм «КМИЭВ-10», депонированный в коллекции микроорганизмов РУП «Институт экспериментальной ветеринарии им. С. Н. Вышелесского». Вирус поддерживали в серийных пассажах

и титровали на перевиваемой культуре клеток почки эмбриона свиньи СПЭВ. Цитопатическое действие (ЦПД) вируса ТГС проявляется не ранее, чем через 24 ч и характеризуется в начальной стадии появлением мелкозернистой инфильтрации, а затем клетки отторгаются от стекла, оставляя только сеть зернистого материала.

Клетки почки эмбриона свиньи СПЭВ культивировали в ростовой питательной среде, представляющей собой среду Игла и среду 199 в соотношении 1:1 с добавлением 10%-й эмбриональной телячьей сыворотки, 2 мМ L-глутамина и антибиотиков (100 ед./мл пенициллина и 100 мкг/мл стрептомицина). Поддерживающая питательная среда содержала все указанные выше ингредиенты и 2%-й эмбриональной телячьей сыворотки.

Для приготовления монослоя клеток в плоскодонных 96-луночных планшетах использовали суспензию культуры клеток линий СПЭВ в концентрации 300 тыс. клеток/мл. В лунки плоскодонных 96-луночных планшетов 8-канальной пипеткой вносили по 100 мкл поддерживающей питательной среды, а затем в те же лунки — суспензию клеток СПЭВ (по 100 мкл в каждую). Планшеты с культурами клеток инкубировали в течение 48 ч в термостате при температуре плюс (37 \pm 0,5) °C в атмосфере с объемной долей углекислого газа (5,0 \pm 0,5) % и относительной влажностью (75 \pm 5) % до формирования в лунках планшет сплошного монослоя, включающего только типичные клетки.

На первом этапе готовили разведения водной суспензии еловой живицы на поддерживающей среде от 10-1 до 10-12. Затем 100 ТЦД вируссодержащей суспензии и водорастворимую суспензия живицы в различных концентрациях объединяли в соотношении 1:1 и выдерживали 1 ч в термостате при 37 °C для контакта вируса с образцом препарата. После этого смесь вносили на монослой клеток в объеме по 0,1 мл на лунку (по 4 лунки на каждое разведение). Затем в культуральные планшеты вносили по 0,1 мл поддерживающей питательной среды. После завершения сорбции вирусов на культуре клеток и контакта с ними через 60 минут удаляли смесь вирусов с живицей. Далее в каждую лунку вносили по 200 мкл поддерживающей питательной среды. В поддерживающую среду добавляли 2%-й эмбриональной телячьей сыворотки. Планшеты помещали в CO_2 -инкубатор и инкубировали при 5% CO_2 и температуре $(37,0\pm1,0)$ °C.

В качестве положительного контроля вместо водной суспензии еловой живицы использовали 0,7%-ный раствор формальдегида; в качестве отрицательного контроля вируссодержащую суспензию объединяли в соотношении 1:1 с поддерживающей питательной средой.

Инфекционность вируса ТГС определяли по способности к цитопатическому действию (ЦПД). Монослойную культуру клеток СПЭВ отмывали от ростовой среды раствором Хэнкса. После этого в поддерживающей питательной среде готовили 10-кратные разведения вируссодержащего материала, обработанного каждым разведением вируса (после титрации) в концентрации 10 и 100 ТЦД и вносили на монослой клеток в объеме по 0,1 мл на лунку (по 4 лунки на каждое разведение). После контакта в течение 2 ч вирус удаляли, а затем в культуральные планшеты вносили по 0,1 мл поддерживающей питательной среды. Учет результатов проводили каждые сутки путем тщательного сравнения опытных и контрольных лунок в течение 5 суток.

Результаты исследования. При проведении исследований учет реакции проводили путем микроскопирования монослоя клеток спустя 1 сутки после постановки реакции и далее ежедневно с целью определения цитопатических изменений в клетках. Окончательный учет проводили на 4-й день инкубации (таблица).

В результате проведенных исследований по оценке противовирусной активности водной суспензии еловой живицы на культуре клеток СПЭВ в отношении вируса трансмиссивного гастроэнтерита свиней было установлено, что угнетение репродукции вируса под воздействием водной суспензии еловой живицы наблюдалось в разведении 10^{-4} через 48 ч инкубации.

Противовирусная активность водной суспензии еловой живицы в отношении вируса трансмиссивного гастроэнтерита свиней (ТГС)

Разведение водной суспензии еловой живицы	Реакция задержки ЦПД
10-1	####
10–2	####
10–3	+
10–4	+
10–5	++++
10-6	++++
10–7	++++
10-8	++++
10–9	++++
10-10	++++
10-11	++++
10–12	++++

 Π р и м е ч а н и е. #### — задержка ЦПД; + — начальная стадия ЦПД; ++++ — ЦПД во всех лунках.

В контроле вируса при концентрации $100 \text{ ТЦД}50/0,1 \text{ см}^3$ отмечено проявление характерных изменений с полной деструкцией монослоя через 48 ч, при концентрации $10 \text{ ТЦД}50/0,1 \text{ см}^3$ поражение монослоя выявилось у 50 % инфицированных лунок через 72 ч.

Заключение. Полученные результаты позволяют рекомендовать водную суспензию еловой живицы при конструировании противовирусных препаратов.

Список использованных источников

- 1. Диагностика инфекционных болезней сельскохозяйственных животных: вирусные заболевания : монография / А. А. Шевченко [и др.] ; Кубан. гос. аграр. ун-т им. И. Т. Трубилина, Всерос. науч.-исслед. и технол. ин-т биол. промышленности, Витеб. гос. акад. вет. медицины. Краснодар : КубГАУ, 2018. 484 с.
- 2. Диагностика инфекционных болезней сельскохозяйственных животных: бактериальные заболевания: монография / А. А. Шевченко [и др.]; Кубан. гос. аграр. ун-т им. И. Т. Трубилина, Всерос. научисслед. и технол. ин-т биол. промышленности, Витеб. гос. акад. вет. медицины. Краснодар: КубГАУ, 2018. 701 с.
- 3. Изучение антибактериальных и биоцидных свойств сосновой живицы / П. А. Красочко [и др.] // Сб. науч. тр. КНЦЗВ. -2021. Т. 10. № 1. С. 24–29.
- 4. Изучение противовирусной активности водорастворимой формы прополиса / П. А. Красочко [и др.] // Вет. біотехнологія. -2019. -№ 35. C. 71–80.
- 5. Матвейко, А. П. Лесной фонд республики Беларусь и его использование / А. П. Матвейко // Тр. БГТУ. Лесная и деревообрабатывающая промышленность. 2015. № 2 (175). С. 76–78.
- 6. Новиков, В. С. Род Ель (*Picea*) / В. С. Новиков, И. А. Губанов // Популярный атлас-определитель. Дикорастущие растения. 5-е изд., стереотип. М. : Дрофа, 2008. С. 65–66.
- 7. Отбор образцов для лабораторной диагностики бактериальных и вирусных болезней животных : учеб.-метод. пособие для студентов фак. вет. медицины по специальности 1–74 03 02 «Ветеринарная медицина» и слушателей ФПК и ПК по ветеринарных специальностям / И. Н. Громов, В. С. Прудников, П. А. Красочко, Н. С. Мотузко, Д. О. Журов. Витебск : ВГАВМ, 2020. 64 с.
- 8. Пашкова, Т. В. Целительные свойства деревьев в лечебной практике карел (опыт обобщения материала) / Т. В. Пашкова // Ученые записки Петрозавод. гос. ун-та. -2015. N 3. С. 77—82.
- 9. Роль микрофлоры в возникновении заболеваний у животных и птиц / П. А. Красочко, В. М. Голушко, Е. А. Капитонова // Проблемы интенсификации производства продуктов животноводства: тез. докл. Междунар. науч.-практ. конф. / Науч.-практ. центр НАН Беларуси по животноводству. 2008. С. 292—294.