весьма сложно применять для контроля наличия МБТ, так как они не отличаются высокой чувствительностью, на получение результатов уходит до 3 месяцев, и они не пригодны для исследования пастеризованного молока.

Заключение. 1. ПЦР в режиме реального времени по совокупности требований к методу диагностики МБТ является наиболее приемлемым неинвазивным методом исследований. 2. Целесообразно продлить ПЦР до 50 циклов при использовании тест-системы «PCR-RT Molo-tub» для выхода сигнала флуоресценции на «плато».

Литература. 1. Тест-система для обнаружения ДНК типичных и трансформированных микобактерий туберкулеза методом полимеразной цепной реакции в режиме реального времени PCR-RT MOLO-tub: ТУ ВҮ 600049853.150-2022: введ. PБ 11.07.2022 / А.П. Лысенко, М.В. Кучвальский, Е.Л. Красникова, А.Н. Притыченко, Е.И. Якобсон. — Минск: Институт экспериментальной ветеринарии им. С.Н. Вышелесского, 2022. — 13 с. 2. Detection of Mycobacteria by Culture and DNA-Based Methods in Animal-Derived Food Products Purchased at Spanish Supermarkets / I.A. Sevilla [et al.] // Frontiers in Microbiology. — 2017. — Vol. 8. — P. 1030. 3. Digital PCR assay detection of circulating Mycobacterium tuberculosis DNA in pulmonary tuberculosis patient plasma / R. Ushio [et al.] // Tuberculosis (Edinburgh, Scotland). — 2016. — Vol. 99. — P. 47—53. 4. Genotypic identification of mycobacteria by nucleic acid sequence determination: report of a 2-year experience in a clinical laboratory. / P. Kirschner [et al.] // Journal of Clinical Microbiology. — 1993. — Vol. 31. — Genotypic identification of mycobacteria by nucleic acid sequence determination, № 11. — P. 2882—2889. 5. IS6110, an IS-like element of Mycobacterium tuberculosis complex. / D. Thierry [u др.] // Nucleic Acids Research. — 1990. — Vol. 18, № 1. — P. 188. 6. Survival of Mycobacterium avium subspecies paratuberculosis in retail pasteurised milk / Z.E. Gerrard [et al.] // Food Microbiology. — 2018. — Vol. 74. — P. 57—63.

ИНФОРМАЦИОННЫЕ СИСТЕМЫ В ОБЛАСТИ ОБЕСПЕЧЕНИЯ ВЕТЕРИНАРНОГО БЛАГОПОЛУЧИЯ

ЛАЗОВСКИЙ В.А., ЖЕЛЕЗКО А.Ф., БУБЛОВ А.В., ГАЙСЕНОК С.Л., ЯНУТЬ Н.В.

УО «Витебская ордена «Знак Почета» государственная академияветеринарной медицины», г. Витебск, Республика Беларусь

Приведен анализ и дана характеристика информационных систем прослеживаемости и идентификации объектов подконтрольных ветеринарному надзору играющих ключевую роль в сфере обеспечения ветеринарного благополучия территорий по инфекционным болезням животных. Ключевые слова: информационные системы, прослеживаемость, идентификация, биологическая безопасность, благополучие по инфекционным болезням.

INFORMATION TRACEABILITY SYSTEMS IN THE FIELD OF SUPPORT VETERINARY WELFARE

LAZOVSKI V.A., ZHELEZKO A.F., BUBLOV A.V., GAISENOK S.L, YANUT N.V.

Vitebsk State Academy of Veterinary Medicine Academy, Vitebsk, Republic of Belarus

An analysis and a description of information systems for traceability and identification of objects controlled by veterinary supervision playing a key role in ensuring the veterinary well-being of territories for infectious diseases of the abdomen is presented. **Keywords:** information systems, traceability, identification, biological safety, well-being for infectious diseases.

В сфере обеспечения национальной биологической безопасности, ветеринарное благополучие территорий по инфекционным болезням животных играет ключевую роль, а это возможно только при внедрении в систему противоэпизоотических мероприятий действенных современных информационных систем прослеживания и идентификации.

Под информационной системой в области ветеринарной деятельности понимают совокупность информационных ресурсов, а также информационных технологий и программно-технических средств в области ветеринарной деятельности. А определение терминов «информационной системы» и «информационной системы в области ветеринарии», а также порядок создания и использования данного ресурса регламентированы в законах Республики Беларусь «О ветеринарной деятельности» и «Об информации, информатизации и защите информации»(с изменениями и дополнениями).

Постановлением Совета Министров Республики Беларусь «Об информационной системе в области ветеринарии» от 22 апреля 2021г. № 232 утверждено Положение «О порядке создания и использования информационной системы в области ветеринарии, ее взаимодействия с иными информационными системами», которое определяет обеспечение организационных, социально-экономических процессов, способствующих формированию и использованию государственных информационных ресурсов для осуществления деятельности государственной ветеринарной службы, а также юридических, физических лиц, в том числе индивидуальных предпринимателей, являющихся субъектами отношений в области ветеринарной деятельности[1].

К основными функциями информационной системы в области ветеринарии относят:

- информационное обеспечение субъектов отношений в области ветеринарной деятельности;
- обеспечение взаимодействия с государственными органами иностранных государств в области ветеринарной деятельности.

Обеспечением функционирования информационной системы в области ветеринарной деятельности занимается уполномоченный компетентный орган Республики Беларусь - Министерство сельского хозяйства и продовольствия.

Динамичность развития и глобализация современной мировой экономики обусловливают возникновение рисков связанных с возможностью передачи заразного начала и не только возбудителей трансграничных болезней(ящур, АЧС, блутанг, ЗУД, оспа овец и коз, ВПГ, болезнь Ньюкасла и др.) на огромные территории. Законом мирового товарооборота, является то, что экспортер должен соблюдать и выполнять требования страны импортера, и фундаментом этих условий, является идентификация и прослеживаемость животных, пищевой продукции, кормов и компонентов животного происхождения, предназначенных или предполагаемых для использования в качестве продуктов питания, на всех стадиях их жизненного цикла «производитель-переработчик-продавец-потребитель», которая обеспечивает биологическую безопасность, в Республике Беларусь и в целом во всем мире. А концепция прослеживаемости требует, открытой коммуникации и применения соответствующих информационных технологий [2, 3].

Идентификация – означает наличие средств, для того, чтобы показать, что представляет собой отдельный объект, на какой стадии технологического процесса он либо существует, либо произведен и результатом какого процесса он является.

Средствами идентификации могут выступать маркировочные знаки, разрешительные штампы, бирки, этикетки, ярлыки, штрих-коды, система кодирования путевой карты и т.д. Идентификация(маркировка) необходима при:

- классификации продуктов;
- выбраковке продукции несоответствующего качества;
- проведенных операциях при изъятии продукции;
- изучении возникших проблем, связанных со сбоем технологического процесса производства пищевых продуктов или изменением эпизоотической ситуации;
 - появлении продукции, несоответствующей ветеринарно-санитарным требованиям;
- демонстрации выполнения организацией национальных и международных законодательных норм и требований потребителей (например, в отношении отсутствия добавок, гормонов, консервантов и др.) [1].

Идентификация продуктивных животных обеспечивает прослеживаемость за движением животных в пределах технологического цикла, состоянием их здоровья, за уровнем ветеринарного обслуживания (противоэпизоотическими, лечебно-профилактическими и диагностическими ветеринарными мероприятиями) [4].

Сформулировать же определение прослеживаемость продукции животного происхождения, которая при изменении эпизоотической ситуации, является фактором распространения возбудителя инфекций, можно как возможность отслеживания движения, места нахождения и происхождения продукции, кормов, животных и компонентов животного происхождения, предназначенных или предполагаемых для использования в качестве продуктов питания, на всех стадиях производства, обработки и распределения. В условиях цифровой экономики прослеживаемость - это гарантированная возможность на безбумажной основе отслеживания пути грузов подконтрольных ветеринарному надзору, цепи поставок на основе машиночитаемых идентификаторов, цифровых описаний или паспортов товаров и цифровых электронных сопроводительных документов. Эффективная прослеживаемость является необходимой предпосылкой гарантии безопасности и качества продукции животного происхождения и должна позволять отследить продукты в обе стороны по цепи поставки, т.е. возможность проследить за продуктами животного происхождения, кормами и материалами на всех стадиях производства, переработки и распределения. В конечном итоге потребители должны иметь

возможность получить информацию о происхождении продукта: условиях содержания, кормления и эксплуатации животных, какие ветеринарно-санитарные мероприятия применялись в отношении их, на каком предприятии были подвергнуты убою, как был выработан соответствующий продукт [6].

Автоматизированные информационные системы (АИС) в системе прослеживаемости, безопасности животноводческой продукции и обеспечения ветеринарного благополучия создаются в целях обеспечения прослеживаемости подконтрольных ветеринарному контролю (надзору) товаров; оформления и выдачи ветеринарных сопроводительных документов в электронном виде; оформления разрешений на экспорт, импорт и транзит через территорию страны или союза государств (ЕС, ЕАЭС) этих товаров; регистрации данных, отбора проб, результатов ветеринарно-санитарной экспертизы и других лабораторных исследований для обеспечения ветеринарного благополучия.

В Беларуси государственная система идентификации и регистрации прослеживаемости животных и продукции животного происхождения начала работать в 2015 году, с момента принятия Закона Республики Беларусь «Об идентификации, регистрации, прослеживаемости сельскохозяйственных животных, идентификации и прослеживаемости продуктов животного происхождения» N 287-3, который полностью вступил в силу с 24 января 2018 года. На международном уровне разработкой систем прослеживаемости и идентификации занимается Международная организация по стандартизации, указавшая на необходимость данных процедур в серии стандартов ИСО 9001 и ИСО 22000, посвященной системам менеджмента безопасности пищевых продуктов.

Cucmeма GS1 — это глобальная универсальная система, принятая потребителями, бизнессообществом и правительствами, закладывает уникальный фундамент для обеспечения работы всех необходимых процессов в системах прослеживаемости. Существуя и успешно развиваясь около 50 лет, и при этом, обладая возможностью глобальной уникальной идентификации торговых и логистических единиц, участников и местоположений, система GS1, наилучшим образом подходит для организации прослеживаемости [7].

Нейтральной, некоммерческой, глобальной организацией, которая разрабатывает и поддерживает наиболее широко используемую систему стандартов в сфере идентификации в международных цепях поставок, является *Ассоциация GS1*. Через свои локальные национальные организации-члены в 114 странах мира GS1 взаимодействует с сообществами торговых партнеров, отраслевыми сообществами, правительствами и поставщиками технологий, чтобы оперативно реагировать на потребности их бизнеса путем принятия и осуществления глобальных стандартов. В Республике Беларусь интересы белорусских производителей и дистрибуторов, а также иностранных компаний, ведущих хозяйственную деятельность у нас в стране представляет в GS1 и других международных организациях, которые работают в области автоматической идентификации и штрихового кодирования *Ассоциация автоматической идентификации ГС1 Бел*, в мае 1998 года которой был присвоен префикс <u>481</u>, а это означает, что всем зарегистрированным пользователям штриховых кодов системы GS1 Ассоциацией ГС1 Бел (ранее – EAH Беларуси) присваивались и присваиваются регистрационные номера, начинающиеся именно с этих цифр, и штриховые коды на их продукции также начинаются с цифр 481.

Стандарты GS1в Беларуси имплементированы примерно на 80-90%. Такие же стандарты, о которых просто малоизвестно, применяются ко всем любым действиям, которые имеют место в цепи перемещения грузов подконтрольных ветеринарному надзору. Система GS1 также предусматривает использование универсального способа идентификации сторон и их расположений (GLN – Global Location Number).

Штриховая идентификация является средством автоматической идентификации, при котором распознавание объекта происходит с помощью специальных считывающих технических средств(сканеров), а собственно штриховое кодирование - это способ представления атрибута объекта, подлежащего автоматической идентификации, при котором цифровой или алфавитно-цифровой код изображается в виде штрихов и пробелов, размеры и последовательность которых формируется по заранее определенным правилам.

Автоматическую идентификацию объектов подконтрольных ветеринарной службе с использованием штрихового кодирования, обеспечивает международная система товарной нумерации EAH(EAN - European Article Number), применяя коды с унифицированной структурой «EAH-13». Кроме линейных кодов в последние годы в практической ветеринарии стали использовать двухмерные матричные коды, в частности при оформлении ветеринарных сопроводительных документов(ветеринарных сертификатов и ветеринарных свидетельств). Они являются незаменимыми в современной реальности и представляют собой двухмерную матрицу, состоящую из черно-белых модулей. В настоящее время существуют следующие разновидности, как: PDF417; DataMatrix; QR-код; Aztec Code. Главное их преимущество заключается в кодировании больших объемов информации.

Самой распространенной разновидностью матричного двухмерного кода является <u>QR-код</u>. Название происходит от английского *quick response* – «быстрый отклик». Использование данного штрих-кода свободно и бесплатно во всем мире, как для юридических, так и для физических лиц, а расшифровать их может обычный смартфон с установленной программой по чтению QR-кода.

Говоря об идентификации, как неотъемлемой части системы прослеживания необходимо отметить то, что она, является необходим инструментом, при: классификации объектов; определении ветеринарно-санитарного статуса и благополучия по заразным болезням этих объектов; анализе проводимых противоэпизоотических и других лечебно-профилактических мероприятий; изъятии продукции в случаях угрозы распространения инфекционных болезней; изучении возникших проблем; демонстрации выполнения уполномоченными ветеринарными структурами национальных и международных законодательных норм и требований.

На предприятиях по переработке животноводческой продукции с целью недопущения попадания в пищевую цепь небезопасных агентов(возбудителей заразных болезней) проводится идентификация сырья, полуфабрикатов и готовой продукции на различных стадиях технологического процесса путем постановки клейм, штампов, оформления и прикрепления бирок, с указанием уникального номера и наименования изделия, даты его изготовления, номера партии, отметок контролера о его приемке и других необходимых данных. Это имеет большое значение при изъятии продукции, несоответствующей ветеринарно-санитарным требованиям, которые могут представлять угрозу для здоровья и жизни людей, животных или привести к значительному экономическому ущербу. При угрозе безопасности пищевых продуктов или распространения опасных заразных болезней, возможности их изъятия, производитель или компетентный орган смогут проследить и точно определить нахождение животного, стадию процесса или продукт. где возникла проблема.

В настоящее время на уровне Евразийского экономического союза в системе прослеживаемости наблюдается переходный период с физической и документальной прослеживаемости в информационную(цифровую).

Система идентификации, регистрации и прослеживаемости продукции животного происхождения в Беларуси базируется на трех компонентах:

- первый это идентификация животных (продуктов);
- второй электронная ветеринарная сертификация;
- третий информационная система прослеживаемости (база данных или система учета и хранения событийной истории).

В Республике Беларусь разработан и находится в стадии эксплуатации функциональный комплекс прослеживаемости продуктов животного происхождения, являющийся компонентом государственной информационной системы идентификации, регистрации, прослеживаемости сельскохозяйственных животных (стад), идентификации и прослеживаемости продуктов животного происхождения *AITS* (*ГИС AITS*), который создан в соответствии с Законом Республики Беларусь «Об идентификации, регистрации, прослеживаемости сельскохозяйственных животных (стад), идентификации и прослеживаемости продуктов животного происхождения» [2].

Функциональный комплекс AITS – Ветбезопасность обеспечивает автоматизацию деятельности специалистов в области ветеринарной деятельности, как государственных ветеринарных служб, так и юридических лиц по выписке ветеринарно-сопроводительных документов (ВСД) на перемещение товаров, подконтрольных ветеринарному контролю (надзору), в пределах Республики Беларусь и в рамках Евразийского экономического союза [5].

На сегодняшний день внедрение данного комплекса позволило:

- автоматизировать работу специалистов в области ветеринарной деятельности при проведении ветеринарного контроля(надзора);
 - снизить трудовые, материальные и финансовые затраты на оформление ВСД;
 - создать единую централизованную базу данных ВСД;
- интегрировать обмен данными о подконтрольных грузах между информационной системой ветеринарной сертификации продукции ИС «AITS-Ветбезопасность»(Республика Беларусь) и ФГИС «Меркурий»(Российская Федерация).

Электронные ветеринарные сертификаты оформляемые в информационном ресурсе базируются на передаче общих данных о товарах(грузах) подконтрольных ветеринарному надзору, которые включают в себя общее ветеринарно-санитарное состояние перемещаемого объекта и благополучие местности по заразным болезням животных, однако на сегодняшний момент не дают полной идентифицирующей информации о конкретном объекте т.е. отсутствуют или не обязательны идентификаторы перемещаемых товаров.

Оформление электронных ветеринарных сертификатов осуществляют в соответствии международному стандарту *E-cert (UN/CEFACT)*, но в виду того, что не у всех операторов задействованные в пищевой цепи равно как, и уполномоченных компетентных органов, имеется возможность работать с устройствами, которые понимают электронные ветеринарные сертификаты, специалисты в области ветеринарной деятельности печатают их на бумажных носителях, которые маркируются маленьким QR кодом. Без идентификации товара и без стандартизованной событийной истории прослеживаемость и электронный обмен данными большого смысла не имеет.

В настоящее время разработаны общие требования к заполнению ветеринарных сертификатов Таможенного союза, утвержденных Решением Комиссии Таможенного союза от 18.11.2010 № 317 «О применении ветеринарно-санитарных мер в Евразийском экономическом союзе». Это сделано в целях соблюдения единых подходов при электронной ветеринарной сертификации в информационной подсистеме ИС «AITS-Ветбезопасность» и получения возможности заполнения формы сертификата при внесении информации об отгружаемых товарах в ИС «AITS-Ветбезопасность» с дальнейшей ее передачей в ФГИС «Меркурий» (Российская Федерация).

В Российской Федерации в целях обеспечения прослеживаемости подконтрольных товаров принята Государственная информационная система Ветис, включающая в себя специальные информационные системы такие как, Аргус(предназначенная для автоматизации ветеринарного надзора на внешней границе ЕАЭС), Меркурий(предназначенная для электронной сертификации и обеспечения прослеживаемости поднадзорных государственному ветеринарному надзору грузов при их производстве, обороте и перемещении по территории Российской Федерации в целях создания единой информационной среды для ветеринарии, повышения биологической и пищевой безопасности) и др.

Для осуществления экспорта продукции подконтрольной ветеринарному надзору на территорию Европейского союза хозяйствующими субъектами Республики Беларусь используется интегрированная компьютеризированная ветеринарная система TRACES (Экспертная система контроля торговли) — это трансевропейская информационная сеть, которая уже почти 20 лет контролирует импорт и экспорт животных и продуктов животного происхождения на территории Европейского союза. Во всех государствах-членах Европейской союза функционирует система быстрого оповещения по продуктам питания и кормам (система быстрого оповещения для продовольствия и кормов, RASFF) об уведомлениях, которые используются для прямого или косвенного риска для здоровья человека и животных, вытекающие из продуктов питания или корма [3, 6].

Ветеринарное благополучие может быть обеспечено только при действенных современных информационных системах прослеживания и идентификации, что в конечном итоге наряду с пищевой безопасностью позволит поддерживать на надлежащем уровне биологическую защиту Беларуси.

Литература. 1. Железко А.Ф. Государственный ветеринарный надзор: учебное пособие / А.Ф. Железко. – Минск : ИВЦ Минфина, 2016. – 568 с. 2. Железко А.Ф. Организация ветеринарной деятельности: учеб. пособие / А.Ф. Железко, Е.И. Совейко. – Минск: РИПО, 2018. – 326 с. 3. Железко, А.Ф. Международные обязательства и рекомендации в области ветеринарии и безопасности пищевых продуктов: практическое пособие / А.Ф. Железко. – Минск: ИВЦ Минфина, 2020. – 216 с. 4. Организация и экономика ветеринарного дела : учеб. пособие / А.Ф. Железко, В.А. Лазовский; под ред А.Ф. Железко. – Минск : ИВЦ Минфина, 2019. – 373 с. 5. Лазовский В.А., Прикладные аспекты оформления ветеринарной документации : учеб. – метод. пособие для студентов факультета ветеринарной медицины по специальности 1-74 03 02 «Ветеринарная медицина», учащихся колледжей, слушателей ФПК и ПК, ветеринарных специалистов / В.А. Лазовский, В.М. Жаков, В.А., Машеро. – Витебск : BГАВМ, 2019 . – 80 c.6. Лазовский В.А., Информационные системы прослеживания животных и продуктов, подконтрольных ветеринарному надзору: учеб. – метод. пособие для студентов биотехнологического факультета по специальности 1-74 03 04 «Ветеринарная санитария и экспертиза», ветеринарных специалистов, слушателей ФПК и ПК / В.А. Лазовский, В.М. Жаков. – Витебск : ВГАВМ, 2019 . – 28 с. 7. Лазовский В.А., Маркетинг в сфере обращения ветеринарных и фармацевтических товаров : учеб. – метод. пособие для студентов биотехнологического факультета по специальности 1-74 03 05 «Ветеринарная фармация» и слушателей ФПК и ПК / В.А. Лазовский, Л.Н. Кашпар. – Витебск : ВГАВМ, 2019 . – 84 с.