при наличии этого меда пчелы плохо выдерживают перезимовку. Однако имеет ли этот мед ядовитые свойства для людей, пока еще убедительно не выяснено.

Результатами наших исследований и наблюдений установлено, что склероции спорыны в складских помещениях в течение 7-8 месяцев теряют не только содержание ядовитых веществ, но и способность к возобновлению инфекции.

Следовательно, с целью ограничения распространения болезни в первую очередь необходимо обратить внимание на мероприятия организационно-хозяйственного плана, в том числе посев из переходящих семенных фондов, а также агротехнические, селекционные, биологические и химические приемы защиты злаковых культур, ингибирующие развитие спорыньи.

УДК 619:616.155.194:636.4

Способ профилактики алиментарной анемии поросят

М.Г. Николадзе

Витебская государственная академия ветеринарной медицины

Среди болезней недостаточности свиней одно из первых мест занимает алиментарная анемия, которой болеют преимущественно поросята-сосуны. Основной причиной анемии в современных условиях является дефицит железа, возникающий из-за несоответствия между скоростью роста новорожденных поросят и поступлением микроэлемента с молоком матери. При этом в крови происходит снижение гемоглобина, гематокритной величины, количества эритроцитов, развивается их гипохромия. Больные поросята отстают в росте, у них возникает иммунодефицитное состояние, сопровождающееся уменьшением содержания в крови лейкоцитов. В настоящее время для предупреждения железодефицитного состояния у поросят наиболее часто используют ферроглюкин-75, который, повышая количество гемоглобина в крови, не оказывает существенного влияния на содержание лейкоцитов. Поэтому изыскание новых средств, стимулирующих эритро- и лейкопоэз организма поросят, остается актуальным.

Целью нашей работы явилось выяснение влияния комплексного минерального препарата (КМП), предложенного сотрудниками БелНИИЭВ, содержащего железо, магний, йод и селен на морфологические показатели крови поросят, а также возможности применения КМП для профилактики алиментарной анемии поросят.

Для опыта использовали поросят с 2-4 до 30-32-дневного возраста, которых по принципу аналогов разбили на три группы. Животным первой подопытной группы внутримышечно вводили ферроглюкин-75 в дозе 1,5 мл на 1 голову, двукратно с интервалом 7 дней в 2-4 и 9-11-суточном возрасте. Поросята второй подопытной группы были дважды с интервалом 7 дней обработаны КМП в дозе 0,5 мл/кг живой массы тела. Третья группа поросят служила контролем. Указанные препараты им не применялись.

От 12 поросят каждой группы в возрасте 2-4, 9-11, 16-18, 24-26 и 30-32 дней отбирали пробы крови для морфологических исследований. Кровь стабилизировали гепарином. Определяли гематокритную величину, содержание гемоглобина, эритроцитов, лейкоцитов, выводили лейкограмму общепринятыми методами.

Установлено, что у поросят контрольной группы развивалась алиментарная анемия, сопровождающаяся снижением на 9-й -11-й день жизни количества гемоглобина до 64,8 г/л и эритроцитов до 4,36х10 /л, а на 16-й -18-й день - лейкоцитов до 5,32х10 /л, лимфоцитов до 2,52х10 /л и гематокритной величины до 25,5% (табл.). По мере роста данные показатели несколько стабилизировались, но не достигали уровня физиологической нормы. У поросят, обработанных железосодержащими препаратами, морфологические показатели крови были достоверно выше, чем в контрольной группе (р<0,01). У них отмечалась тенденция к увеличению содержания гемоглобина, эритроцитов, лейкоцитов, лимфоцитов и гематокритной величины. Наиболее ярко уровень гемоглобина повышался у поросят, обработанных ферроглюкином-75 (до 109,3 г/л) через неделю после второго введения препарата, несколько слабее - у животных, которым применяли КМП до 93.1 г/л. Количество эритроцитов сильнее увеличивалось у поросят второй группы - до 5,61х10 /л к 16-18-му и 5,89х10 /л к 30-32-му дням жизни. В первой группе повышение числа эритроцитов было менее выражено: до 5,21х 10 /л и 5,29х10 /л к 16-18-му и 30-32-му дням соответственно. У поросят, обработанных ферроглюкином-75 содержание лейкоцитов по мере роста незначительно повышалось - до 7,74х10 /л к 24-28-му дню. Сильнее количество лейкоцитов возрастало в группе, поросята которой обработаны КМП до 10,6х10 /л.

Наибольшее увеличение числа эритроцитов и лейкоцитов у поросят второй группы, вероятно, связано как с активизацией целого ряда метаболических реакций йодом, селеном, магнием, так и со стимулирующим действием тиреоидных гормонов на гемопоэз. Содержание лейкоцитов в крови животных, которым вводили КМП, повышалось главным образов за счет лимфоцитов. Так, у поросят данной группы их количество к 24—28-дневному

возрасту достигло 5,42х10 /л, что было достоверно выше, чем в других группах.

Возрастание числа лимфоцитов на фоне общего усиления лейкопоэза свидетельствует об активизации клеточных факторов иммунной защиты. Гематокритная величина закономерно увеличилась после введения железосодержащих препаратов у поросят первых двух групп. Так, через неделю после обработки поросят ферроглюкином-75 она повышалась до 45,0%, но к 30-32-му дню снижалась до 41,2%. У поросят, которым применяли КМП гематокритная величина увеличивалась постепенно, закономерно повышаясь по мере роста от 2-4 к 30-32-дневному возрасту с 29,7% до 44,0%, что напрямую связано с усилением эритропоэтических процессов.

Таблица. Морфологические показатели крови поросят

(M+m, p)

(MTTIII, D)						
Показа-	№	Возраст, дней				
тели	гр.					
L.		2-4	9-11	16-18	24-28	30-32
Гемо-	I	86,3+2,89	106,6±3,11*	109,3+2,89*	107,9+2,62*	109,3+3,07*
глобин,	2	80,6±1,88	84,0+1,78*	93,1+2,35*	91,5±3,18*	91,2+2,64*
г/л	3	84,2+2,71	64,8+2,24	71,6+2,41	72,6+3,41	74,1+3,08
Эритро-	1	4,60±0,09	4,96+0,12*	5,21±0,11*	5,31±0,12*	5,29+0,15*
циты,	2	4,26+0,21	4,86+0,24*	5,61+0,18*	5,82+0,21*	5,89±0,16*
10 /л	3	4,64+0,08	4.36+0.09	4,33+0,13	4,45+0,16	4,55+0,19
Гемато-	1	30,3±0,45	38,4+0,78*	45,0±1,09*	44,2+0,93*	41,2+0,84*
критная	2	29,7+0,90	36,5+0,87*	42,7+0,91*	43,5+0,94*	44,0+0,88*
величи-	3	31,3+0,76	29,8+0,44	25,5+0,53	27,0+0,57	28,1±0,75
на,%						
Лейко-	1	6,87+0,34	7,54±0,47	7,68+0,43*	7,74+0,40**	7,72±0,51
циты,	2	$6,53\pm0,30$	7,82±0,89	9,09±0,85*	10,60+0,86*	9,80_+0,65*
10 /л	3	6,84+0,46	7,24+0,32	5,32+0,24	6,65+0,48	7,01+0,44
Лимфо-	1	3,39+0,19	3,54±0,19	3,36+0,18*	3,37±0,18	3,57±0,20
циты,	2	3,32+0,17	4,36+0,22*	4,64+0,23*	5,42+0,25*	4,97±0,24*
10 /л	3	3,61+0,21	3,53+0,17	2,52+0,14	3,19+0,19	3,22+0,19

^{*} Р<0,01 (по сравнению с поросятами контрольной группы);

Препарат КМП при внутримышечном введении поросятамсосунам в дозе 0,5 мл/ кг массы тела, дважды с интервалом 7 дней, предупреждает развитие анемии, повышая в крови уровень гемоглобина, гематокритную величину и количество эритроцитов, а также оказывает стимулирующее действие на клеточные факторы иммунной системы, увеличивая в крови содержание лейкоцитов, главным образом за счет лимфоцитов.

^{**} Р<0,05 (по сравнению с поросятами контрольной группы)