Заключение. Характер обнаруженных гистологических изменений в структурной организации щитовидной и надпочечных желез в наиболее ответственные возрастные периоды онтогенеза овец свидетельствуют о тесной корреляции морфологических и морфометрических параметров органов с уровнем определяющих функциональных отправлений организма животных.

Изучение структур выше упомянутых органов в возрастном аспекте, а главное, в самые ответственные периоды жизни, представляет определенный теоретический интерес и предполагает существенную практическую пользу.

Литература. 1. Атагимов, М. 3. Морфология надпочечника в постнатальном онтогенезе у овец дагестанской горной породы / М. З. Атагимов, Г-Г. Р. Магомедов // Известия Оренбургского государственного аграрного университета. – 2010. – № 29. – С. 101-103. 2. Клименкова, И. В. Гистологические особенности строения надпочечников у гусей на ранних этапах постнатального онтогенеза / И. В. Клименкова, Я. С. Масейкова. Ф. Д. Гуков // Студенты — науке и практике АПК : материалы 96 Международной научнопрактической конференции. – Витебск, 2011. – С. 202-203. З. Клименкова, И. В. Динамика возрастной морфологической перестройки щитовидной железы кур / И.В.Клименкова, Н.В.Баркалова // Животноводство и ветеринарная медицина. – 2016. – № 3 (22). – С. 10–16. 4. Клименкова, И. В. Динамика изменений гистологических структур надпочечников кур в возрастном аспекте / И. В. Клименкова, О. П. Пепеляева // Студенческая наука и инновации : материалы 94 Международной научно-практической конференции студентов и магистрантов. – Витебск, 2009. – С. 194-195. 5. Клименкова, И. В. Микроморфологические показатели и особенности нервного аппарата щитовидной железы кур на разных этапах постнатального онтогенеза / И. В. Клименкова, Н. О. Лазовская // Животноводство и ветеринарная медицина. – 2018. – № 2 (29). – С. 62-66. б. Клименкова, И. В. Морфология щитовидной железы цыплят при экспериментальном хроническом микотоксикозе, применении митофена и вакцинации против ИББ / И. В. Клименкова, Алараджи Фуркан Саббар Кадхум, И. Н. Громов // Молодой ученый. – Казань : ООО «Издательство «Молодой ученый», 2016. – С. 46-48. 7. Клименкова, И. В. Морфометрические и некоторые гистохимические показатели щитовидной железы крыс / И. В. Клименкова, В. К. Вансяцкая, Н. В. Баркалова // Сельское хозяйство – проблемы и перспективы : сборник научных трудов. – Гродно, 2014. – Т. 25. – С. 112-118. 8. Клименкова, И. В. Сравнительная микроморфология щитовидной железы кур в раннем постнатальном онтогенезе / И. В. Клименкова, Ф. Д. Гуков // Ученые записки Витебской государственной академии ветеринарной медицины. –2005. – Т. 41, вып. 2, ч.2. – С. 91-92. 9. Паталета, А. В. Морфологические особенности щитовидной железы дегу / А. В. Паталета, И. В. Клименкова, Н. В. Спиридонова // Студенты – науке и практике АПК : [Электронный ресурс] : материалы 106-й Международной научно-практической конференции студентов и магистрантов. Витебск, 21 мая 2021 г. / УО ВГАВМ; редкол: Н. И. Гавриченко (гл.ред.). – Витебск: ВГАВМ, 2021. – С. 240–241. 10. Патологическая анатомия сельскохозяйственных животных. Практикум : учебное пособие для студентов высших сельскохозяйственных учебных заведений по специальности «Ветеринарная медицина» / В. С. Прудников [и др.]; ред. В. С. Прудников. – Минск : ИВЦ Минфина, 2010. – 351 с.

Поступила в редакцию 09.03.2023.

УДК 611.37

СТРУКТУРНАЯ И ГИСТОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА ЭНДОКРИННОГО ОТДЕЛА ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ У ЕНОТОВИДНОЙ СОБАКИ В РАННЕМ ПОСТНАТАЛЬНОМ ОНТОГЕНЕЗЕ

Ковалев К.Д., Федотов Д.Н.

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

В статье изучены возрастные закономерности морфологических и гистохимических изменений эндокринного отдела поджелудочной железы енотовидной собаки, которые следует рассматривать как компенсаторно-приспособительную реакцию организма, направленную на поддержание метаболического гомеостаза в зоне радиационного воздействия. **Ключевые слова:** енотовидная собака, поджелудочная железа, морфогенез, радиация, онтогенез.

STRUCTURAL AND HISTOCHEMICAL CHARACTERISTICS OF THE ENDOCRINE PANCREAS IN ROCCOON DOG IN EARLY POSTNATAL ONTOGENESIS

Kovaliou K.D., Fiadotau D.N.

Vitebsk State Academy of Veterinary Medicine, Vitebsk, Republic of Belarus

The article studies the age-related patterns of morphological and histochemical changes in the endocrine pancreas of a raccoon dog, which should be considered as a compensatory-adaptive reaction of the body aimed at maintaining metabolic homeostasis in the zone of radiation exposure. **Keywords:** raccoon dog, pancreas, morphogenesis, radiation, ontogenesis.

Введение. Учет енотовидной собаки в Полесском государственном радиационноэкологическом заповеднике проведен по норам на площади 285 км², что составляет 14 % площади обитания вида. По расчетам ее численность составляет 270 особей, плотность — 1,3 ос./1000 га. В заповеднике обитает около 3 % популяции этого вида в республике [2]. Следует отметить, что по сравнению со средней плотностью населения енотовидной собаки в Гомельской области, в Полесском государственном радиационно-экологическом заповеднике она в 5 раз выше [3, 4]. За последние годы на популяции енотовидной собаки, выбранной в качестве модели, выяснено, что доля молодняка и, следовательно, воспроизводство и выживаемость находились в пределах нормы, характерной для этого вида млекопитающих.

Росту численности диких млекопитающих на территории Полесского государственного радиационно-экологического заповедника способствовали увеличение естественной кормовой базы за счет бывших сельхозугодий, отсутствие фактора беспокойства (снятие антропогенной нагрузки), а также относительно мягкие зимы и заповедный режим [1].

Морфология и функция пищеварительной системы отражают эволюционные приспособления животных к ведущему фактору жизни — качеству кормления. Разнообразие у енотовидной собаки объектов пищевой цепи обусловливает физиологические и структурные изменения в органах пищеварительной системы. Поджелудочная железа — главный орган химической обработки пищи, отражает в своей деятельности экологические особенности качеств кормовых объектов (учитывая тип питания енотовидной собаки). Однако плотоядные животные остаются малоизученными в отношении влияния малых доз радиации. Научных работ, посвященных изучению морфологических изменений в поджелудочной железе енотовидной собаки, обитающей в 30 км зоне отчуждения Чернобыльской АЭС, в мире учеными не проводилось.

Цель исследований – изучить структурную и гистохимическую характеристику эндокринного отдела поджелудочной железы у енотовидной собаки в раннем постнатальном онтогенезе на территории высокого радиоактивного загрязнения и снятия антропогенной нагрузки (в условиях белорусского сектора зоны отчуждения).

Материалы и методы исследований. Исследования по изучению морфологических изменений поджелудочных желез енотовидных собак выполнялись в лаборатории кафедры патологической анатомии и гистологии УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», отделе экологии и фауны государственного природоохранного научно-исследовательского учреждения «Полесский государственный радиационно-экологический заповедник». Животные отлавливались на территории Полесского государственного радиационно-экологического заповедника. Для гистологического изучения поджелудочной железы исследовано 10 особей данной возрастной группы — до 1 года. Зафиксированный в 10 % нейтральном растворе формалина морфологический материал подвергали уплотнению путем заливки в парафин по общепринятой методике. Депарафинирование и окрашивание гистологических срезов гематоксилин-эозином проводили с использованием автоматической станции «МІСКОМ НМЅ 70». Для гистохимических исследований часть срезов дополнительно окрашивали по Гомори (для выявления кислой фосфатазы), суданом ІІІ (для выявления липидов) и по Нахласу (для выявления сукцинатдегидрогеназы).

Для количественной оценки островковой ткани на гистологических срезах изучались следующие показатели: 1) соотношение эндокринной, экзокринной паренхимы и стромы (относительный показатель, %); 2) общее количество клеток в островках; 3) объем ядер и цитоплазмы и ЯЦО среди В- и А-клеток; 4) определение величины островков путем разбивки их на классы: І класс — 5-16 клеток (очень мелкие), ІІ класс — 16-30 клеток (мелкие), ІІІ класс — 31-60 клеток (средние), ІV класс — 61-100 (крупные), V класс — более 100 клеток (гигантские) [6].

Результаты исследований. Результаты гистологических исследований с использованием количественных критериев оценки позволили установить, что эндокринная часть представлена островками Лангерганса, которые разбросаны по всей паренхиме поджелудочной железы. Они пронизаны густыми сетями кровеносных капилляров и неравномерно окрашиваются в разных дольках поджелудочной железы. В этот исследуемый возрастной период эндокринные островки являются уже действующей эндокринной железой (отличаются зрелостью, завершенностью своей структуры и метаболической организации), но несмотря на сформированность общей конструкции островков, отдельные компоненты их находятся в стадии роста и дифференцировки. Сформировавшиеся островки обычно локализованы внутри долек и окружены базальной мембраной. Островки с отсутствием четких границ и не утратившие связь с выводной системой иногда встречаются в прослойках междольковой соединительной ткани.

Основным типом островков щенков енотовидной собаки является «плащевой», и выделяются две зоны: гемоцеллюлярная (центральная) и гетероцеллюлярная (периферическая). Гемоцеллюлярная зона состоит преимущественно из В-клеток, в гетероцеллюлярной – преобладают А-, D-и РР-клетки. А- и В-эндокриноциты по характеру внутриклеточной организации достаточно дифференцированы, хотя в составе островков можно найти и дифференцирующиеся клетки с крупными ядрами, не достигшие окончательного развития. Встречаются также В-клетки с фигурами митоза.

В паренхиме поджелудочной железы у щенков в возрастной группе до 1 года островки Лангерганса часто округлой, неправильно-округлой, неправильной удлиненно-вытянутой, узкой полигональной, ромбовидной, неправильной трапециевидной, причудливой, реже отростчатой формы.

Наиболее часто встречаемые формы в этот возрастной период: округлая, неправильная трапециевидная и узкая полигональная.

Панкреатические островки бессистемно располагаются между ацинусами. В дольках островки эндокриноцитов чаще располагаются в центре от 1 до 6, иногда они бывают парные, располагаются близко друг к другу и разъединяются между собой 2-4 слоями ацинусов.

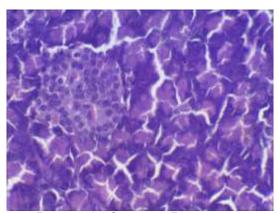


Рисунок 1 – Островок Лангерганса округлой формы

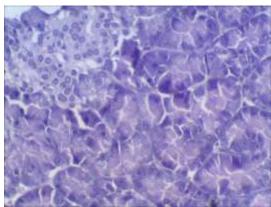


Рисунок 2 – Островок Лангерганса неправильной трапециевидной формы

В округлых островках Лангерганса А-клетки представлены округлой формой с бледной цитоплазмой, содержащей ацидофильные гранулы и крупное шаровидное ядро. Хроматин ядра распределялся по всей площади, но значительная его часть прилегала к кариолемме. А-клетки располагаются на периферии островка в виде полулуния. Нами не обнаружены островки, где бы А-клетки располагались по всему периметру периферии островка. Среди инсулоцитов преобладали В-клетки, которые занимали центральную область островков. Они преимущественно кубической или округлой формы, имеют крупное круглое ядро. Цитоплазма пенистая и содержит секреторные гранулы. Обнаруженные нами D-клетки вытянутой конусовидной формы с крупным шаровидным ядром, содержащим 2-3 ядрышка.

В данных островках РР-клетки представлены полигональной формой с крупными шаровидными ядрами, а в их цитоплазме иногда выявляются мелкие гранулы. Располагаются одиночно (по 1-2 клетки) по периферии островка, но в редких случаях обособлены и встречаются за пределами островков Лангерганса. В исследуемых гистологических срезах в данных островках насчитывается до 60 эндокриноцитов, из них А-клетки составляют – 19 %, В-клетки – 75 %, Д-клетки – 3 %, РР-клетки – 3 %. Данные островки по своим размерам и количеству клеток относятся к островкам ІІІ класса (средние). Диаметр средних округлых панкреатических островков в данной возрастной группе составляет 119,63±0,91 мкм.

В островках неправильной трапециевидной формы А-клетки преимущественно имеют округлую форму и крупное более бледно окрашивающееся ядро (чем в В-клетках), располагаются одиночно либо по 2-3 клетки на периферии островка. В исследуемых островках В-клетки представлены кубической формой, с темным гетерохромным ядром и пенистой цитоплазмой и занимают практически весь островок (то есть имеют как центральное, так и периферическое расположение). При этом на периферии островка В-клетки часто располагаются в виде парных тяжей, а иногда – в виде свернутых в клубок тяжей. А- и В-эндокриноциты по характеру внутриклеточной организации достаточно дифференцированы, хотя в составе островков можно найти и дифференцирующиеся клетки с крупными ядрами, не достигшие окончательного развития. Встречаются также В-клетки с фигурами митоза. D-клетки в островке неправильной трапециевидной формы очень крупные, округлой формы, с пенистой цитоплазмой и крупным овальным ядром. В отличие от вышеописанных РР-клетки располагаются на периферии вблизи А- и В-клеток, формируя группу из 3-5 эндокриноцитов полигональной формы, больших размеров, имеют овальные ядра с ярко-выраженными глыбками хроматина. В островках неправильной трапециевидной формы насчитывается до 30 клеток, что дает основание отнести их к II классу, но изредка на гистологических срезах встречаются данные островки с количеством клеток до 37, следовательно, в ряде исключения, их можно определить к III классу. А-клеток насчитывают 20,5 %, В-клеток – 61,5 %, Д-клеток – 5,1 %, РР-клеток – 12,9 % от общего объема клеток. Данные островки относятся к ІІ классу (мелкие). Диаметр данных островков в возрастном периоде до 1 года составляет 69.53±3.89 мкм.

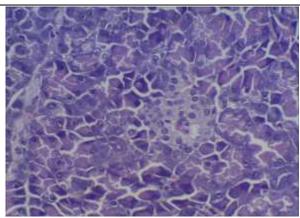


Рисунок 3 – Островок Лангерганса округлой формы с внеостровковой РР-клеткой

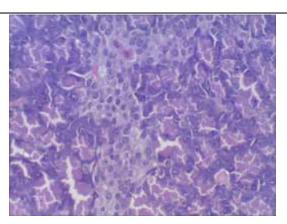


Рисунок 4 – Островок Лангерганса узкой полигональной формы

В островках узкой полигональной формы А-клетки чаще округлой формы с крупными ядрами, содержащими крупноглыбчатый и мелкоглыбчатый хроматин. Чаще всего В-инсулоциты имели полигональную либо призматическую форму клеток, округлое насыщенное гетерохроматином ядро, в котором в большинстве случаев наблюдалось одно интенсивно окрашивающееся ядрышко. Цитоплазма В-клеток местами пенистая, а местами имеет интенсивно окрашенную зернистость с участками просветления. D-клетки вытянутой конусовидной формы с крупным шаровидным ядром, слабогранулированной цитоплазмой и одиночно разбросаны по всей площади островка. PP-клетки имеют светлые ядра с мелкоглыбчатым, разбросанным по всей их площади хроматином. Как и в D-клетках, их границы не всегда отчетливо видны. Островки узкой полигональной формы по своей площади являются самыми крупными на гистологических срезах и насчитывают 100 и более инсулоцитов, что дает основание относить их к IV-V классу (большие или гигантские), так как вариации их размеров и количества клеток довольно велики. Диаметр этих островков в группе животных до 1 года составляет 203,93±8,08 мкм. В среднем количественное отношение эндокриноцитов имеет следующую картину: А-клетки — 14 %, В-клетки — 77 %, Д-клетки — 3 %, PP-клетки — 6 %.

Рисунок 5 – Процентное отношение эндокриноцитов в островках Лангерганса разных форм у енотовидных собак возрастом до 1 года

Объем ядер, цитоплазмы и ядерно-цитоплазматическое отношение среди А- и В-клеток представлено в таблице 1.

Таблица 1 – Цитологические показатели эндокриноцитов поджелудочной железы енотовидных собак в ювенильный период

HEIX GOOGLE HOSTINISHEN HOPHOM		
Показатели	Тип клеток	
	А-клетки	В-клетки
ОЯ, мкм ³	36,02±1,08	35,46±3,46
ОЦ, мкм ³	65,62±1,58	82,23±3,59
ЯЦО	0,55±0,02	0,43±0,02

Примечания: ОЯ – объем ядер;

ОЦ – объем цитоплазмы;

ЯЦО – ядерно-цитоплазматическое отношение.

У щенков енотовидной собаки до 1 года в островках Лангерганса очень часто наблюдаются надъядерные скопления кислой фосфатазы. При этом активность ферментов в экзокринной части железы – умеренное, а в эндокринной – высокая. Также определяются очень высокая активность фермента сукцинатдегидрогеназы (СДГ). В островках Лангерганса при окраске суданом ІІІ выявляются суданофильные гранулы, которые в В-клетках располагаются вокруг жировых включений, которые локализуются по периферии клеток. В А-клетках гранул меньше, но их размер крупнее, чем в В-клетках. Суданофильные липиды оранжево-коричневого цвета, располагаются около ядер. Насыщенность окраски суданофильных липидов наблюдается на периферии островков Лангерганса и имеет золотисто-коричневый цвет.

В раннем постнатальном периоде площадь эндокринного отдела поджелудочной железы у енотовидных собак составляет $2,09\pm0,56~\%$, экзокринного - $82,38\pm0,67~\%$ и стромы соответственно $15,53\pm0,71~\%$.

Заключение. В ранний постнатальный период (до 1 года) эндокринный аппарат поджелудочной железы енотовидной собаки отличается зрелостью, завершенностью своей структуры и метаболической организации. Данные, полученные на светооптическом уровне как количественными методами исследования, так и путем качественного анализа свидетельствуют о том, что наиболее быстрыми темпами морфологическая и гистохимическая дифференцировка происходит в первый год жизни щенков енотовидных собак на территории белорусского сектора зоны отчуждения Чернобыльской АЭС. Островки Лангерганса значительно раньше, чем экзокринная ткань железы завершают свое функциональное становление. Расположение и морфометрические параметры островков количество, размер, клеточный состав – претерпевают наиболее сложную трансформацию. Основным типом островков щенков енотовидной собаки является «плащевой», и выделяются две зоны: гемоцеллюлярная (центральная) и гетероцеллюлярная (периферическая). Гемоцеллюлярная зона состоит преимущественно из В-клеток, в гетероцеллюлярной – преобладают А-, D-и РР-клетки. Формы островков Лангерганса: округлая, неправильная трапециевидная и узкая полигональная. У щенков енотовидной собаки до 1 года в островках Лангерганса наблюдается высокая активность ферментов – кислой фосфатазы и СДГ, а также выявляются суданофильные липиды, большая насыщенность которых регистрируется на периферии островков.

Изучение онтогенетических механизмов становления эндокринных островков – одного из звеньев эндокринной системы – имеет общебиологическое значение, так как дополняет имеющиеся сведения об ее уникальных свойствах.

Литература. 1. Животный мир в зоне аварии Чернобыльской АЭС; под ред. Л. М. Сущени, М. М. Пикулика, А. Е. Пленина. – Минск: Навука і тэхніка, 1995. – С. 200-210. 2. Кучмель, С. В. Мониторинг охотничьих и промысловых видов млекопитающих на территории ПГРЭЗ. Результаты 2005 года / С. В. Кучмель // 20 лет после чернобыльской катастрофы: сборник научных трудов. – Гомель: РНИУП «Институт радиологии», 2006. – С. 216-225. З. Савицкий, Б. П. Млекопитающие Беларуси / Б. П. Савицкий, С. В. Кучмель, Л. Д. Бурко. – Минск: Изд. Центр БГУ, 2005. – 319 с. 4. Федотов, Д. Н. Формообразовательные процессы и морфологические изменения периферических эндокринных желез при адаптивно-приспособительных реакциях енотовидной собаки в зоне снятия антропогенной нагрузки и при действии радиоактивного загрязнения / Д. Н. Федотов, И. С. Юрченко // Ветеринарный журнал Беларуси. – 2019. – № 1 (10). – С. 68–71. 5. Федотов, Д. Н. Морфогенез щитовидной железы у енотовидной собаки в постнатальном онтогенезе на территории высокого радиоактивного загрязнения / Д. Н. Федотов // Ученые записки учреждения образования «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины». – 2022. – Т. 58, вып. 3. – С. 60-65. 6. Heterogeneity of the langergans islets morphology in condition of hypo- and hyperglykcemia / S. Donev [et al.] // Мед.прегл. Ser. Period. / Мед. универ. София. Центр. инф. Мед. – 2001. – Vol. 4, № 1. – Р. 3-10.

Поступила в редакцию 09.02.2023.

УДК 619:576.895.132:636.32/.38:612.015.1

ВЛИЯНИЕ TRICHOSTRONGYLUS COLUMBRIFORMIS (GILES, 1892) НА АКТИВНОСТЬ НЕКОТОРЫХ ПИЩЕВАРИТЕЛЬНЫХ ФЕРМЕНТОВ У ОВЕЦ

Кузьменкова С.Н.

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

В статье приведены результаты исследований активности протеазы, амилазы и липазы, для определения которых были применены методы хронического опыта и экспериментального заражения овец личинками трихостронгилюсов. Было установлено значительное снижение активности исследуемых ферментов под влиянием паразитов, что также сопровождалось и клиническими проявлениями. Ключевые слова: активность ферментов, амилаза, протеаза, липаза, трихостронгилез.