БИОЛОГИЧЕСКИЕ НАУКИ

УДК:636.52/.58.061.4/.8

БИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ МУХИ ЧЕРНАЯ ЛЬВИНКА

Андриянова Э. М., Башаров А. А.

ФГБОУ ВО «Башкирский государственный агарный университет», г. Уфа, Российская Федерация

Цикл жизни Hermetia illucens около 45 дней. После вылупления из яйца личинки достигают 2 мм, затем интенсивно растут до 18 дня своей жизни и достигают 16-18 мм. Имеют белую окраску в течение 3-5 дней, затем начинает темнеть, поскольку в теле начинает вырабатываться хитин, и постепенно приобретают темную окраску, и на 24-26 день жизни становится черной. Затем происходит окукливание, которое длится до 36-40 дня и вырастает имаго. Ключевые слова: черная львинка, Hermetia illucens, черный солдатик.

BIOLOGICAL FEATURES OF THE BLACK LION FLY

E. M. Andriyanova, A. A. Basharov

Bashkir State Agrarian University, Ufa, Russian Federation

The life cycle of Hermetia illucens is about 45 days. After hatching from the egg, the larvae reach 2 mm, then grow intensively until the 18th day of their life and reach 16-18 mm. They have a white color for 3-5 days, then begins to darken, since chitin begins to be produced in the body, and gradually acquire a dark color, and on day 24-26 of life it becomes black. Then pupation occurs, which lasts up to 36-40 days and grows adults. **Keywords**: black lion, Hermetia illucens, black soldier.

Введение. Личинки черного солдатика (Hermetia illucens, Black Soldier Fly) могут использоваться в сельском хозяйстве за счет своей неприхотливости и высокой плодовитости [1,2]. При этом, в связи со своим происхождением из Южной Америки и приспособленностью у теплого климата, для ее использования необходимо знать ее биологические особенности.

Материалы и методы исследований. Анализ литературных данных; химический состав личинок был изучен в Лаборатории биохимического анализа и биотехнологии НОЦ ФГБОУ ВО «Башкирский государственный аграрный университет» по требованиям общепринятых Международных стандартов.

Результаты исследований. Цикл жизни Hermetia illucens около 45 дней. После вылупления из яйца личинки достигают 2 мм, затем интенсивно растут до 18 дня своей жизни и достигают 16-18 мм. Имеют белую

окраску в течение 3-5 дней, затем начинает темнеть, поскольку в теле начинает вырабатываться хитин, и постепенно приобретают темную окраску, и на 24-26 день жизни становится черной. Темный пигмент львинки может использоваться в качестве источника меланина, который используется как мощный антиоксидант и выступает как онкопротектор [1,2, 3]. Нами были проведены исследования по изучению химического состава личинок в зависимости от возраста.

Результаты наших химических анализов свидетельствуют, что влажность образцов в зависимости от возраста (и зависимого от этого показателя окраски тела) была в диапазоне 62,93-63,96%. С возрастом насекомого, содержание сухого вещества становится больше, поскольку происходит повышение концентрации макронутриентов. Так, в возрасте 22 и 26 дней количество сырого протеина выше на 0,4%, чем у молодых личинок. В 26-дневном возрасте, в стадии предкуколки, личинки копят в себе жир для того, чтобы во время окукливания хватило энергетических резервов для происходящих изменений. Максимальное содержание минеральных веществ обнаружено в 22 дневном возрасте – 5,71%, который снижается на 0,21% в 26-дневном возрасте. Эти же тенденции распространяются на содержание кальция. Средняя калорийность личинок составляет 290 ккал/100 г сухого вещества. Причем, наиболее питательны личинки молодого и позднего возраста. Содержание меланина, вероятно, подвергается значительным колебаниям, и требует дальнейшего изучения.

Заключение. Таким образом, состав личинок черной львинки незначительно меняется с возрастом и цветом самого насекомого. Скармливать личинок можно с 15 дневного возраста, а из засушенных насекомые можно использовать в изготовлении комбикормов для сельскохозяйственных животных и птицы.

Литература. 1. Восканян О.С. Особенности и перспективы использования черной львинки / Восканян О.С., Котова Н. А. // Научные исследования молодых ученых. 2020. - N 1. - C. 22-23. 2. Влияние кормовой добавки энтомологического происхождения на биохимические и продуктивные показатели сельскохозяйственной птицы / Ильина Г.В., Ильин Д.Ю., Ошкина Л.Л., Сашенкова С.А., Остапчук А.В. // Нива Поволжья. – 2021. – №2 (59). https://cyberleninka.ru/article/n/vliyanie-kormovoy-Режим доступа: dobavki-entomologicheskogo-proishozhdeniya-na-biohimicheskie-iproduktivnye-pokazateli-selskohozyaystvennoy – Дата доступа: 06.12.2022. 3. Влияние кормовой добавки энтомологического происхождения на биохимические и продуктивные показатели сельскохозяйственной птицы / Ильина Г.В., Ильин Д.Ю., Ошкина Л.Л., Сашенкова С.А., Остапчук А.В. // Нива 2021. *№2* (59).Режим доступа: https://cyberleninka.ru/article/n/vliyanie-kormovoy-dobavkientomologicheskogo-proishozhdeniya-na-biohimicheskie-i-produktivnyepokazateli-selskohozyaystvennoy – Дата доступа: 06.12.2022.