УДК: 636.09:636.2+60

ПРИНЦИПЫ КОНСТРУИРОВАНИЯ РЕКОМБИНАНТНЫХ ПРОТИВОВИРУСНЫХ ВАКЦИН И ИХ ИСПОЛЬЗОВАНИЕ В ВЕТЕРИНАРНОЙ МЕДИЦИНЕ

Красочко П.П., д.б.н., доцент УО «Витебская ордена «Знак Почёта» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Бычкова Т.К., к.б.н., доцентФГБОУ ВО Смоленская ГСХА, г. Смоленск, Россия

Колесникович К.В., м.в.н., аспирантУО «Витебская ордена «Знак Почёта» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Аннотация. Изучены основные принципы конструирования рекомбинантных противовирусных вакцин и их использование в ветеринарной медицине. Установлено, что по сравнению с обычными вакцинами рекомбинантные вакцины безопасны для введения, не реплицируются, просты в производстве, экономичны и не имеют вредного воздействия из-за нежелательных антигенных материалов.

Ключевые слова: вакцина, рекомбинантный, белок, вирус, крупный рогатый скот.

Введение

В структуре заболеваний крупного рогатого скота инфекции молодняка вирусной этиологии занимают одно из ведущих мест. В этиологической структуре инфекционных заболеваний телят существенное значение играют такие возбудители, как инфекционный ринотрахеит, вирусная диарея, парагрипп-3, респираторно-синцитиальный, рота- и коронавирусы [1].

Применение антибиотиков для лечения данной группы заболеваний слабоэффективно, так как, они не воздействуют на вирусы и уничтожают как патогенную, так и нормофлору кишечника, что приводит к дисбактериозам.

Наиболее эффективным направлением для профилактики инфекционных болезней является вакцинация [2].

Одним из наиболее важных и ответственных этапов при изготовлении вакцин является накопление вирусов. Однако не все вирусы накапливаются в высоких титрах в культуре клеток. Так, если вирусы инфекционного ринотрахеита, диареи и ротавирусы могут накапливаться до титра 7,5-8,5 lg ТЦД 50/мл, что достаточно для изготовления вакцин, то репродукция таких вирус парагриппа-3, респираторно-синцитиальный коронавирус не всегда высокая и после культивирования их титр часто не требует достигает 4,5 ТЦД 50/мл,что концентрирования И lg вируссодержащего материала для получения высокоактивной вакцины.

В этой связи для повышения накопления вирусов в последние годы используются генно-инженерные технологии [7]. Генно-инженерные (рекомбинантные) вакцины получают путем введения генов, кодирующих основные антигены патогенов вирусов в геном микроорганизмовреципиентов. В качестве реципиентов при создании рекомбинантных штаммов чаще всего используют кишечную палочку, дрожжевые клетки, вирусы осповакцины и вирусы насекомых.

Создание подобных вакцин началось в 70-е годы прошлого века. Ярким генно-инженерной (рекомбинантной) вакцины является рекомбинантная антирабическая вирус-вакцина ДЛЯ пероральной иммунизации диких плотоядных животных «Raboral» разработанная французскими учеными [8]. В качестве вектора-носителя для внедрения чужеродного гена был выбран вирус оспы коров (штамм «Копенгаген»), в который внедрили копию ДНК, кодирующую гликопротеин вирусной оболочки (gpG) вируса бешенства ERA. В результате была получена живая рекомбинантная вакцина названием антирабическая c (The vaccinia–rabies glycoprotein).

По сравнению с обычными вакцинами рекомбинантные вакцины безопасны для введения, не реплицируются, просты в производстве, экономичны и не имеют вредного воздействия из-за нежелательных материалов [4]. Их можно получить путем антигенного белка (белков) из любого инфекционного организма после его разрушения. Этот тип стратегии широко распространен в вакцинах против называемых сплит-вакцинами. Поскольку вирусных субъединиц, субъединичные вакцины вызывают меньший иммунитет по сравнению с цельными бактериями или вирусной вакциной, их используют с подходящим адъювантом. Примеры таких включают субъединичную вакцину против вируса ньюкаслской болезни (NDV) с использованием гена гемагглютининнейраминидазы (HN), субъединичную вакцину против вируса ящура с использованием гена VP-1, субъединичную вакцину против цирковируса 2 (PCV-2) на основе открытой рамки считывания-2 субъединичная (коммерциализирована) и вакцина против японского энцефалита на основе белка оболочки prM и E.

Применение рекомбинантных вакцин позволяет повысить эффективность вакцинации за счет снижения заболеваемости, падежа и выбраковки молодняка, затрат на антибиотики (на 20-25%) и на проведение ветеринарно-санитарных мероприятий (на 15-20%) и получать значительный экономический эффект [5].

Целью исследования явилось изучение основных принципов конструирования рекомбинантных противовирусных вакцин и их использование в ветеринарной медицине.

Материалы и методы

Исследования проводились в отраслевой лаборатории ветеринарной биотехнологии и заразных болезней животных УО ВГАВМ.

При анализе принципов конструирования рекомбинантных противовирусных вакцин использовали отечественные и зарубежные литературные источники.

Результаты исследований

Важным условием получения эффективного вакцинного препарата соблюдение основных принципов производства. его Конструирование рекомбинантных противовирусных вакцин предполагает: 1) получение соответствующего фрагмента нуклеиновой кислоты; 2) выбор высокоактивной и хорошо изученной в иммунологическом отношении модели вектора-носителя и клонирование соответствующего гена; 3) выбор системы экспрессии клонированного гена, способной обеспечить функциональную максимальный выход И полноценность продукта; 4) создание достаточно удобных и по возможности универсальных векторов для целевой доставки генов в клетки и ткани организма.

Фрагменты ДНК для встраивания в вектор можно получить непосредственно из хромосомной ДНК, расщепив ее рестриктазами или разрушив с помощью ультразвука на сегменты с примерно одинаковой длиной. Выделение генов с помощью "вырезания" из генома, как правило, состоит из четырех этапов: 1) получение клонотеки фрагментов генома; 2) выявление фрагментов генома, содержащих необходимый ген, и точная локализация гена в данном фрагменте; 3) вырезание гена из фрагмента(ов) с помощью рестриктаз и сшивка участков гена с помощью ДНК-лигазы фага Т4, если эти участки получены из различных фрагментов; 4) амплификация гена в составе векторной молекулы.

Под понятием "вектор" понимается молекула нуклеиновой кислоты, способная после введения в клетку к автономному существованию за счет наличия в ней сигналов репликации и транскрипции.

Выбор высокоактивной и хорошо изученной в иммунологическом отношении модели вектора-носителя и клонирование соответствующего гена заключается во встраивании фрагментов ДНК в так называемые векторные молекулы ДНК - плазмидные или вирусные ДНК, которые могут быть перенесены в клетки про- или эукариот и автономно реплицироваться [3]. Получение рекомбинантных РНК обычно осуществляют методами ферментативного или химического лигирования РНК, встраивания сегмента РНК в заданное положение других молекул РНК с помощью рибозимов.

При выборе системы экспрессии клонированного гена, способной обеспечить максимальный выход и функциональную полноценность продукта используют бактериальные или дрожжевые культуры клеток, а также системы экспрессии на основе эукариотических клеток. Из бактериальных клеток наиболее изученной в молекулярно-генетическом отношении является грамотрицательная бактерия *Escherichia coli*, поэтому для нее можно с наибольшей определенностью планировать генно-инженерные конструкции. Также возможно конструирование методами генной инженерии штаммов-продуцентов на основе клеток *Bacillus subtilis*.

Данная почвенная бактерия безопасна для человека и животных и прекрасно освоена микробиологической промышленностью. Среди эукариотических микроорганизмов наиболее изученным является низший эукариот Saccharomyces cerevisiae. Одно из преимуществ S. cerevisiae как экспериментальной системы - простота и надежность ее генетического анализа. С появлением генной инженерии внимание многих исследователей также привлекла система культивируемых клеток животных.

При конструировании рекомбинантных противовирусных вакцин немаловажное значение имеет создание специального вектора-носителя, обеспечивающего адресную доставку генов и их защиту от действия нуклеаз крови [6]. В настоящее время создана векторная модель для доставки в клетки костного мозга гена, кодирующего гранулоцитарный колониестимулирующий фактор человека (чГ-КСФ)и модель молекулярного вектора на основе гена, кодирующего гибридный белок: фактор некроза опухолей-альфа-интерферон-гамма [2].

Таким образом создание и использование рекомбинантных противовирусных вакцинных препаратов является новым и перспективным направлением ветеринарной медицины.

Заключение

Создание и использование рекомбинантных противовирусных вакцинных препаратов является новым и перспективным направлением ветеринарной медицины, т. к. позволяет повысить эффективность вакцинации за счет снижения заболеваемости, падежа и выбраковки молодняка, затрат на антибиотики (на 20-25%) и на проведение ветеринарно-санитарных мероприятий (на 15-20%) и получать значительный экономический эффект [5].

Список литературы:

- 1. Ветеринарные и технологические мероприятия при содержании крупного рогатого скота: монография / П.А. Красочко [и др.]; под общ. ред. П. А. Красочко. Смоленск: «Универсум», 2016. 508 с.
- 2. Молекулярный вектор для доставки генов в клетки-мишени / Л.Р. Лебедев [и др.] // Биотехнология. 2001. №1. С. 3-12.
- 3. Юров Г.К., Народицкий Б.С., Юров К.П. Конструирование и использование ДНК-вакцин // Ветеринария. 1998. №12. С. 25-27.
- 4. Кугелев И.М., Комисарова В.С. Система ветеринарно-санитарной экспертизы на фермерском рынке в Г. Смоленске // Современные цифровые технологии в агропромышленном комплексе : Сборник материалов международной научной конференции. В трех томах. Смоленск: Смоленская государственная сельскохозяйственная академия, 2020. С. 87-91.
- 5. Машаров Ю.В. Практико-ориентированный подход в подготовке специалистов по образовательным программам высшего образования 36.00.00 ветеринария и зоотехния в современных условиях научно-технологического развития агропромышленного комплекса Смоленской области // Перспективы

научно-технологического развития агропромышленного комплекса России : сборник материалов международной научной конференции. Смоленск: Смоленская государственная сельскохозяйственная академия, 2019. С. 299-302.

- 6. Иммунный ответ у коров при иммунизации против инфекционного ринотрахеита в зависимости от серологического статуса животных в стадах / П. П. Красочко, Е. И. Ярыгина, Я. П. Яромчик [и др.] // Ветеринарна медицина. 2016. №102. С. 290-294.
- 7. Определение оптимальной иммунизирующий дозы поливалентной вирус-вакцины против вирусных пневмоэнтеритов "Большевак" / П.А. Красочко, М.А. Понаськов, Л.С. Кашко, И.М. Кугелев // Тенденции повышения конкурентноспособности и экспортного потенциала продукции агропромышленного комплекса. Смоленск: ФГБОУ ВО Смоленская ГСХА, 2021. С. 121-130.
- 8. Gay C.G. Genomics and vaccine development // Rev. Sci. Tech. 2007. Vol. 26. №1. P. 49-67.
- 9. Jorge S.The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches // Biotechnol. Res. Innov.2017.Vol. 1. P. 6-13.
- 10. McVey S. Vaccines in veterinary medicine: a brief review of history and technology // Vet. Clin. North. Am Small Anim. Pract. 2010. Vol. 40. №3. P. 81-92.
- 11. Van Kampen K.R. Recombinant vaccine technology in veterinary medicine // Vet. Clin. North. Am Small Anim. Pract. 2001. Vol. 31. №3. P. 5-8.
- 12. Yang D.K. The present and future of rabies vaccine in animals // Clin. Exp. Vaccine Res. 2013. Vol. 2. P. 19-25.