КОЛИБАКТЕРИОЗ НОВОРОЖДЕННЫХ ТЕЛЯТ НА МОЛОЧНОЙ ФЕРМЕ

Красочко П.А., д.в.н., д.б.н., профессор УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Красочко В.П., к.в.н., УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Кашко Л.С., к.в.н., доцент ФГБОУ ВО Смоленская ГСХА, г. Смоленск, Россия **Кугелев И.М.**, к.с-х.н., доцент ФГБОУ ВО Смоленская ГСХА, г. Смоленск, Россия

Аннотация. Приведены результаты изучения вспышки заболевания новорожденных телят на молочной ферме, вызванной Е. Соli. При проведении ПЦР-исследований в патологическом материале геномов вирусов ИРТ, ВД-БС, рота- и корона-вирусов не обнаружили. В результате бактериологического исследования выделены микроорганизмы: Escherichia coli (костный мозг, паренхиматозные органы, кишечник), Myroides phaeus (костный мозг), Myroides odoratimimus (костный мозг), Bacillus spp. (кишечник).

Ключевые слова: крупный рогатый скот, телята, падеж, желудочнокишечные заболевания, полимеразная цепная реакция, бактериологические исследования, колибактериоз, лечение, антибиотики.

Желудочно-кишечные заболевания занимают ведущее место в структуре болезней новорожденных телят. Указанные болезни регистрируют у новорожденных телят начиная с 1-го дня жизни [1].

В отдельных хозяйствах заболеваемость достигает 65-100% от числа родившихся телят, а летальность – до 50-70% от числа заболевших телят [2].

В этиологии желудочно-кишечных заболеваний большое значение имеют нарушения зоогигиенических и ветеринарных правил получения, кормления и выращивания телят, а также возбудители заразных болезней животных (вирусы, микробы и простейшие).

Основными возбудителями желудочно-кишечных заболеваний являются рота- и корона-вирусы, вирусы ИРТ и ВД-БС крупного рогатого скота, а также условно-патогенная и патогенная бактериальная микрофлора (кишечная палочка, клостридии и др.) [3].

В результате широкого распространения данные болезни наносят значительный ущерб животноводству вследствие падежа животных, затрат на проведение лечебно-профилактических мероприятий, а также являются одной из причин снижения племенных качеств и продуктивности от переболевших животных в будущем [4].

Целью нашей работы явилось изучение особенностей проявления вспышки заболевания новорожденных телят на молочной ферме, вызванной E. coli.

Материалы и методы

Исследования проводились в условиях молочной фермы, ФГБОУ ВО Смоленская ГСХА и отраслевой лабораторией ветеринарной биотехнологии и заразных болезней животных в 2022 году.

В указанный период на молочной ферме содержалось 300 дойных коров голштинской породы со среднегодовой продуктивностью свыше 6000 литров молока.

Условия кормления животных соответствуют физиологическим и зоотехническим нормам. Содержание коров круглогодовое стойловое с выгулом на прифермской территории. Телят с суточного возраста выращивали в индивидуальных домиках на открытых площадках.

На момент исследования на ферме применяли вакцину Бовилис Виста Опсе SQпротив инфекционного ринотрахеита, парагриппа-3, вирусной диареи, респираторно-синцитиальной инфекции и пастереллеза крупного рогатого скота живую сухую. Данной вакциной прививали коров и телок перед осеменением, телят — с 3-х месячного возраста. Стельных сухостойных коров и нетелей за 1,5-2 месяца до отела прививали вакциной ОКЗ против колибактериоза, сальмонеллеза, клебсиеллеза и протейной инфекции молодняка сельскохозяйственных животных и пушных зверей. Вакцины вводили животным согласно инструкций по их применению.

Клиническому обследованию подвергли более 300 голов крупного рогатого скота, патологоанатомическому вскрытию — 5 трупов павших и вынужденно убитых телят. При вскрытии брали пробы сердца, селезенки, почек, печени с желчным пузырем, лимфатических узлов, тонкого и толстого отделов кишечника, трубчатую кость.

Молекулярно-генетические исследования проводили в соответствии с Методическими указаниями по диагностике инфекционного ринотрахеита крупного рогатого скота методом полимеразной цепной реакции (утв. ГУВ МСХП РБ 21.06.2008 г., № 10-1-5/565); Инструкцией по применению Тестсистемы «ГенТест вирусная диарея КРС» (ООО «ПЦР технологии», РБ); Инструкцией по применению набора реагентов «ПЦР-КОРОНАВИРУС-КРС-ФАКТОР» для выявления РНК коронавируса (Bovine Coronavirus, BCoV) в биологическом материале методом обратной транскрипции и полимеразной цепной реакции (ПЦР) с флуоресцентной детекцией в режиме реального времени (ООО «ВЕТ ФАКТОР», РФ); Инструкцией по применению набора реагентов «ПЦР-РОТАВИРУС-ФАКТОР» для выявления РНК ротавирусов группы A (Rotavirus A) в биологическом материале методом об-ратной транскрипции и полимеразной цепной реакции (ПЦР) с флуоресцентной детекцией в режиме реального времени (ООО «ВЕТ ФАКТОР», РФ). Указанные исследования проводились в соответствии с Методическими указаниями по постановке полимеразной цепной реакции в ветеринарных диагностических лабораториях (утв. ГУВ МСХ и П РБ 03.03.2008 №10-1-5/127).

Бактериологические исследования патологического материала проводили в соответствии с Методическими указаниями по лабораторной диагностике колибактериоза (эшерихиоза) сельскохозяйственных животных (утв. ГУВ МСХ и П РБ 17.12.2007 г., № 10-2-5/1118).

Результаты исследований

У новорожденных телят отмечали диарею, быстрое обезвоживание и гибель в течение 2-3 дней. При патологоанатомическом вскрытии обнаруживали сильное истощение, воспаление слизистой оболочки сычуга, тонкого кишечника и лимфатических узлов. Заболеваемость в отдельные периоды составляла до 60%, а летальность - 10-50 %.

При проведении ПЦР-исследований в патологическом материале геномов вирусов ИРТ, ВД-БС, рота- и корона-вирусов не обнаружили.

В результате бактериологического исследования выделены следующие виды микроорганизмов: *Escherichiacoli* (костный мозг, паренхиматозные органы, кишечник), *Myroides phaeus* (костный мозг), *Myroides odoratimimus* (костный мозг), *Bacillusspp*. (кишечник).

В патологическом материале не выделены представители рода *Clostridium*.

Результаты определения чувствительности выделенной культуры $E.\ coli$ к антибактериальным препаратам представлены в таблице 1.

Таблица 1 – Чувствительность выделенной культуры *E. coli* к антибактериальным препаратам

No॒	Антибиотик	Диаметр зон	Результат
		подавления роста	
		(MM)	
1	Бензилпенициллин 10 ЕД	10,6	устойчива
2	Ампициллин	22,9	чувствительна
3	Колистин	14,6	устойчива
4	Амоксициллин	21,1	устойчива
5	Доксициклин 30 мкг	10,0	устойчива
6	Фосфомицин	31,1	чувствительна
7	Гентамицин	26,7	чувствительна
8	Норфлоксацин 10 мкг	27,1	чувствительна
9	Флорфеникол 30 мкг	25,5	чувствительна
10	Энрофлоксацин 5 мкг	27,8	чувствительна
11	Азитромицин 15 мкг	31,0	чувствительна
12	Левомицетин	-	устойчива
13	Левофлоксацин 5 мкг	25,4	чувствительна
14	Цефтиофур	19,0	устойчива

Из таблицы видно, что выделенная культура $E.\ coli$ в большей степени чувствительна к фосфомицину, норфлоксацину, энрофлоксацину и азитромицину.

Культура возбудителя чувствительна также к ампициллину, амоксициллину, гентамицину, флорфениколу и левофлоксацину. Возбудитель устойчив к бензилпенициллину, колистину, амоксициллину, доксициклину, левомицетину и цефтиофуру.

Заключение

- 1. По результатам молекулярно-генетических и бактериологических исследований в патологическом материале выделен возбудитель колибактериоза (из костного мозга, кишечника и паренхиматозных органов).
- 2. Выделенная культура $E.\ coli$ в большей степени чувствительна к фосфомицину, норфлоксацину, энрофлоксацину и азитромицину.

Культура возбудителя чувствительна также к ампициллину, амоксициллину, гентамицину, флорфениколу и левофлоксацину. Возбудитель устойчив к бензилпенициллину, колистину, амоксициллину, доксициклину, левомицетину и цефтиофуру.

Список литературы:

- 1. Ветеринарные и технологические мероприятия при содержании крупного рогатого скота / П.А. Красочко, А.Р. Камошенков, И.М. Кугелев, И.В. Брыло, П.П. Красочко, Л.С. Кашко, Н.А. Содомов; под общ. ред. П.А. Красочко. Смоленск: «Универсум», 2016. 508 с.
- 2. Инфекционные и инвазионные заболевания молодняка животных / П.А. Красочко, А.С. Ястребов, О.Г. Новиков, А.И. Ятусевич, Ю.Г. Зелютков, И.А. Красочко, В.С. Прудников, Л.С. Кашко, В.М. Мосин. 3-е изд., доп. и перераб. Смоленск. 2001. 379 с.
- 3. Прудников В.С., Герман С.П., Кашко Л.С. Патоморфология, диагностика и специфическая профилактика вирусных болезней телят при ассоциативном течении // Перспективы научно-технологического развития агропромышленного комплекса России: сборник материалов Международной научно практической конференции студентов, аспирантов и молодых ученых. Смоленск: ФГБОУ ВО Смоленская ГСХА. Том 1. 2019. С. 303-306.
- 4. Красочко П.А., Красочко И.А., Кашко Л.С. Теоретические аспекты возникновения вирусных респираторных заболеваний и желудочно-кишечных инфекций телят // Проблемы патологии, санитарии и бесплодия в животноводстве: материалы международной научно-практической конференции, посвященной 100-летию со дня рождения Х.С. Горегляда и М.К. Юсковца. Минск. 1998. С. 39-40.
- 5. Левченкова В.П., Курская Ю.А. Влияние многоплодия на молочную сычевской продуктивность коров породы // Актуальные проблемы развития животноводства сборник интенсивного : научных трудов Национальной научно-практической конференции. Часть 2. Брянск: Брянский государственный аграрный университет, 2020. С. 34-37.
- 6. Логинова А.А., Курская Ю.А. Анализ динамики изменения поголовья крупного рогатого скота в России // Современные экологически устойчивые технологии и системы сельскохозяйственного производства : сборник

- материалов международной научной конференции. Том 1. Смоленск: ФГБОУВОСмоленскаяГСХА, 2021. С. 255-262.
- 7. Яроцкая Е.В., Леонтьева М.В. Эффективность производства молока на примере Смоленской области // Агробиофизика в органическом сельском хозяйстве: сборник материалов международной научной конференции. Том 2. Смоленск: Смоленскаягосударственнаясельскохозяйственнаяакадемия, 2019. С. 353-357.
- 8. Машаров Ю.В. Практико-ориентированный подход в подготовке специалистов по образовательным программам высшего образования 36.00.00 ветеринария и зоотехния в современных условиях научно-технологического развития агропромышленного комплекса Смоленской области // Перспективы научно-технологического развития агропромышленного комплекса России : сборник материалов международной научной конференции. Смоленск: Смоленская государственная сельскохозяйственная академия, 2019. С. 299-302.
- 9. Соколова Е.Г., Ульянова Н.С., Москалева М.В. Особенности молочной продуктивности и экстерьера коров голштинской и сычевской пород // Современное развитие животноводства в условиях становления цифрового сельского хозяйства: Материалы международной научно-практической конференции.пос. Персиановский: Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Донской государственный аграрный университет", 2020. С. 128-137.
- 10. Бычкова Т.К. Электроактивированные растворы в профилактике иммунодефицита новорожденных телят // Агробиофизика в органическом хозяйстве сборник материалов международной научной рождения конференции, посвященной 80-летию доктора ДНЯ сельскохозяйственных наук, профессора, заслуженного деятеля науки РФ Гордеева Анатолия Михайловича. Смоленск: Смоленская государственная сельскохозяйственная академия, 2019. С. 205-207.
- 11. Кугелев И.М., Комисарова В.С. Система ветеринарно-санитарной экспертизы на фермерском рынке в Г. Смоленске // Современные цифровые технологии в агропромышленном комплексе : Сборник материалов международной научной конференции. В трех томах. Смоленск: Смоленская государственная сельскохозяйственная академия, 2020. С. 87-91.
- 12. Иммунный ответ у коров при иммунизации против инфекционного ринотрахеита в зависимости от серологического статуса животных в стадах / П. П. Красочко, Е. И. Ярыгина, Я. П. Яромчик [и др.] // Ветеринарна медицина. 2016. №102. С. 290-294.
- 13. Measures against cattle's mono-and mixtinvasions with fasciolosis and strongylatoses of the gastrointestinal tract / E.S. Klimova, M. Mkrtchyan, T.V. Babintseva [et al.] // International Scientific-Practical Conference "Agriculture and Food Security: Technology, Innovation, Markets, Human Resources" (FIES 2019): International Scientific-Practical Conference "Agriculture and Food Security: Technology, Innovation, Markets, Human Resources" (FIES 2019). Kazan: EDPSciences, 2020. P. 00198.DOI 10.1051/bioconf/20201700198.