лого стола (с Международным участием), г. Луганск, 24 января 2023 г., в 2-частях, Ч. 1. – Луганск : Ноулидж, 2023. — С. 25–30. 12. Промысловый улов рыбы [Электронный ресурс] / Национальный статистический коми-Республики Беларусь, 2021. Режим http://dataportal.be/stat.gov.by/Indicators/Preview?key=178781 . – Дата доступа : 06.02.2023. 13. Радчиков, В. Ф. Эффективность разных технологий выращивания карпа / В. Ф. Радчиков, А. В. Астренков, Н. Н. Гадлевская // Технологии аквакультуры: современное состояние и перспективы : сборник материалов конференции. – Гродно: ГГАУ, 2019. - С. 62-65. 14. Создание интенсивной технологии производства продукции аквакультуры : методические рекомендации / А. С. Срибный [и др.]. – Ставрополь : АГРУС, 2017. – 118 с. 15. Сырье и технология производства комбикормов для ценных видов рыб в Республике Беларусь / В. Ю. Агеец [и др.] // ВесціНацыянальнайакадэміінавукБеларусі. Серыя аграрных навук. – 2020. – Том 58. – № 1. – С. 79–89. 16. Таразевич, Е. В. Методы селекции на различных этапах породообразовательного процесса при создании белорусских пород карпа : монография / Е. В. Таразевич, М. В. Книга, В. Б. Сазанов. – Минск : БГАТУ, 2017. – 108 с. 17. Хатко, З. Н. Анализ потребления мясных и рыбных продуктов различными группами населения / 3. H. Хатко, E. M. Колодина // Новые технологии. — 2019. — № 1. — C. 216—229.18. Penman, D.J. Carp Genetic Resources for Aquaculture in Asia / D. J. Penman, M. V. Gupta, M. M. Dey. — WorldFish Center Technical Report, 65. Penang : Malaysia, 2005. – 152 p.

Поступила в редакцию 18.01.2024.

УДК 636.52/.58.034

ПОВЫШЕНИЕ ВОСПРОИЗВОДИТЕЛЬНЫХ КАЧЕСТВ РОДИТЕЛЬСКОГО СТАДА МЯСНОГО КРОССА КУР «РОСС–308» ПУТЕМ РОТАЦИИ ПЛЕМЕННЫХ ПЕТУХОВ

Петрукович Т.В.

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Проведены исследования по изучению влияния спайкинга на воспроизводительные качества птицы родительского стада мясного кросса кур «Росс—308» с целью повышения качества инкубационных яиц мясных кур кросса «Росс—308». Доказана эффективность поздней подсадки петухов к курам и определены наиболее значимые факторы, определяющие плодовитость птицы в разных сообществах. Впервые разработаны способы комплектования и содержания родительского стада яичных кур, обеспечивающие им комфортные условия и способствующие повышению оплодотворенности яиц на 3,0 %, вывода цыплят на 3,2 %. Ключевые слова: родительское стадо, инкубация, подсадка, продуктивность, инкубационное яйцо.

IMPROVING THE REPRODUCTIVE QUALITIES OF THE PARENT HERD OF THE MEAT CROSS OF CHICKENS «ROSS–308» BY ROTATING BREEDING ROOSTERS

Petrukovich T.V.

Vitebsk State Academy of Veterinary Medicine, Vitebsk, Republic of Belarus

Studies have been conducted to study the effect of spiking on the reproductive qualities of poultry of the parent flock of meat cross hens «Ross-308» in order to improve the quality of incubation eggs of meat hens of the Ross–308 cross. The effectiveness of late planting of roosters to chickens has been proven and the most significant factors determining the fertility of birds in different communities have been identified. For the first time, methods have been developed for completing and maintaining the parent flock of egg chickens, providing them with comfortable conditions and contributing to an increase in egg fertilization by 3,0 %, chick hatching by 3,2 %. **Keywords:** parent herd, incubation, planting, productivity, incubation egg.

Введение. Птицеводство сегодня является ведущей отраслью сельскохозяйственного производства. В настоящее время у птицеводческой отрасли нашей республики имеются все возможности для полного обеспечения населения диетическими продуктами питания отечественного производства. Так, например, в 2022 году во всех категориях хозяйств производство яиц составило 3462 млн шт., мяса птицы в живом весе — 658,8 тыс. тонн. Такой уровень производства продукции полностью удовлетворяет потребности внутреннего рынка: по состоянию на прошлый год самообеспеченность яйцом птицы достигла 127 %, мясом птицы — 185 % [1].

Динамичное развитие отрасли осуществляется за счет роста поголовья птицы и более высокого выхода продукции с единицы производственной площади, низких затрат корма на единицу продукции, быстрой окупаемости вложенных инвестиций.

Совершенствование технологии производства яиц и мяса птицы всех видов предполагает не только соблюдение нормативных параметров выращивания молодняка и содержания взрослого поголовья, но и безотходной переработки продукции, а также биоконверсию отходов птицеводства. Большую работу предстоит проделать по реконструкции технологического оборудования, внедрению новейших средств механизации и автоматизации производственных процессов [2, 5, 7].

Перевод современного птицеводства на промышленную основу привел к значительному увеличению числа и интенсивности неблагоприятных факторов, действующих на птицу и

вызывающих у нее состояние стресса. При стрессе организм вынужден для сохранения общего гомеостаза делать значительные энергетические затраты, что снижает интенсивность синтетических процессов, направленных на рост мышечной массы или яйца. В случае длительного действия стресса в организме могут возникать необратимые процессы, приводящие к резкому снижению продуктивности, а порой и гибели птицы [3].

Опыт отечественных, зарубежных исследователей и других ученых дает уверенность в том, что действие многих стрессов можно смягчить или даже полностью устранить их негативное воздействие на птицу. В последнее время внимание исследователей все больше привлекают такие аспекты поведения птицы, как половое, агрессивное и кормовое поведение, территориальное размещение, порядок соподчинения особей в группе, яйцекладка [6].

Среди множества форм двигательной активности птицы половое поведение является наиболее изученным. Такое пристальное внимание к этой форме активности продиктовано, прежде всего, наличием прямой связи между частотой спариваний кур и их плодовитостью. Обычно после 35–40 недель у петушков отмечается снижение интереса к спариванию, после 55 недель ухудшается качество спермы.

В последнее время на бройлерных предприятиях, имеющих родительские стада, для повышения оплодотворенности яиц стали использовать различные методы подсадки петушков. Общепринятой практикой при этом является применение подсадки самцов к уже сформировавшемуся стаду. Эта практика предполагает замену самцов—бройлеров на определенном этапе цикла выращивания более молодыми, незнакомыми самцами. Цель подсадки состоит в том, чтобы ввести молодых самцов в уже сложившееся стадо для достижения более высокого уровня фертильности и увеличения брачной активности среди птиц в стае.

Добавление молодых петушков в старшие стада для восстановления снижающейся оплодотворенности яиц обычно проводят после 45 недель. Это помогает улучшить активность спаривания, что повышает оплодотворенность яиц в стаде. Пик оплодотворяемости обычно наступает через 2–3 недели после подсадки, увеличивается выводимость на 2–3 %. Эта стимуляция продолжается 6–8 недель. При правильном применении метод спайкинга может помочь стабилизировать снижение оплодотворяемости и на более поздней стадии производства [4].

В связи с вышеизложенным, изучение влияния спайкинга на воспроизводительные качества птицы родительского стада мясного кросса кур «Росс–308» является актуальной задачей.

Цель исследований заключалась в изучении влияния спайкинга на воспроизводительные качества птицы родительского стада мясного кросса кур «Росс–308».

Материалы и методы исследований. Научно-хозяйственный опыт проводился в производственных условиях на ОАО «Витебская бройлерная птицефабрика» на базе цеха родительского стада, а также в лабораторных условиях птицефабрики. При изучении влияния методов ротации и подсадки резервных петухов в период продуктивности на их сохранность и воспроизводительную способность в 300—дневном возрасте было сформировано две группы птицы кросса «Росс—308» по 153 самца и 1556 несушек в каждой с содержанием напольно на глубокой подстилке с использованием оборудования для поддержания микроклимата Big Dutchman ViperTouch. Для кормления птицы на птицефабрике используется монобрендовое оборудование компании Roxell, а именно кормушки модели Roxell Haikoo, бункер хранения концентрированных кормов Roxell Mod.706, а также шнековая система раздачи кормов производства Roxell с датчиком раздачи корма. Для поения используются ниппельные поилки производства Lubing. Для обогрева помещения используется теплогенератор газовый Munters GA95lp в количестве шести штук. Для подсчета и сортировки яйца используется полностью автоматическое оборудование компании Big Dutchmann EggTrax.

В качестве контроля служил традиционный способ содержания родительского стада, применяемый в хозяйстве. В опытной группе применялся один спайкинг в возрасте кур 43 недели. Возраст петухов при подсадке составлял 24 недели. Преимущество перемещения петухов в стаде в этом возрасте состоит в том, что при повышении оплодотворяемости стада уменьшаются риски биозащиты, вызванные передвижением. Для комфорта петухов их переводили в секции ночью.

Показатели живой массы в процессе опыта соответствовали нормативным показателям выращивания кросса «Росс–308».

В ходе опыта учитывали следующие показатели:

- 1. Затраты корма на 1 голову в сутки и за весь период использования подопытного поголовья рассчитывали, используя данные ведомости ежедневного расхода кормов.
 - 2. Валовой сбор яиц определяли по количеству снесенных яиц за период опыта по группам.
 - 3. Выход инкубационных яиц рассчитывали по формуле:

Выход инкубационных яиц =
$$\frac{\kappa оличество яиц, заложенных в инкубатор}{валовый сбор яиц} \times 100, % (1)$$

4. Выход оплодотворенных яиц определяли по формуле:

Выход оплодотворенных яиц =
$$\frac{\kappa оличество оплодотворенных яиц}{\kappa оличество яиц, заложенных в инкубатор} $\times 100, \%$ (2)$$

5. Вывод молодняка рассчитывали по формуле:

Вывод молодняка =
$$\frac{\kappa оличество суточных цыплят}{\kappa оличество яиц, заложенных в инкубатор} × 100, % (3)$$

6. Экономическую эффективность полученных результатов рассчитывали в соответствии с методикой определения экономической эффективности.

Результаты исследований. Для оценки эффективности замены петухов необходимо проводить регулярный мониторинг кормления, в первую очередь, чтобы удостовериться, что подсаженные в стадо петухи уверенно находят корм, и, вместе с тем, куры «не воруют» корм из петушиных кормушек.

Сведения о количестве потребляемого корма приведены на рисунке 1.

Рисунок 1 - Количество потребляемого корма, г

Данные, полученные в ходе исследования (рисунок 1), свидетельствуют о том, что существенных различий по расходу корма между подопытными группами установлено не было.

Инкубационные качества яиц подопытных групп представлены в таблице 1.

Таблица 1 - Инкубационные качества яиц

Период	Контрольная группа			Опытная группа			
яйце-	вало-	количество	выход	вало	количе-	выход инку-	
носко-	вой сбор	заложен-	инкуба-	вой сбор	ство за-	бационных	
сти,	яиц, шт.	ных на	ционных	яиц, шт.	ложенных	яиц, шт.	± п. п.
нед.		инкубацию	яиц, шт.		на инку-		
		яиц, шт.			бацию		
					яиц, шт.		
1	2	3	4	5	6	7	8
25	5613	3087	55,0	5817	3112	53,5	-1,5
26	8432	6915	82,0	8316	6911	83,1	+1,1
27	9741	9040	92,8	10088	9160	90,8	-2,0
28	9998	9548	95,5	9951	9553	96,0	+0,5
29	10083	9730	96,5	10027	9706	96,8	+0,3
30	10034	9793	97,6	10019	9809	97,9	+0,3
31	9913	9725	98,1	9949	9770	98,2	+0,1
32	9645	9500	98,5	9680	9544	98,6	+0,1
33	9473	9350	98,7	9473	9350	98,7	0
34	9247	9145	98,9	9253	9142	98,8	-0,1
35	8972	8882	99,0	8949	8860	99,0	0
36	8924	8853	99,2	8876	8796	99,1	-0,1
37	8695	8608	99,0	8643	8565	99,1	+0,1

		Продолжение таблицы 1					
1	2	3	4	5	6	7	8
38	8519	8442	99,1	8470	8402	99,2	+0,1
39	8308	8225	99,0	8225	8151	99,1	+0,1
40	8156	8074	99,0	8137	8056	99,0	0
41	7992	7920	99,1	7995	7923	99,1	0
42	8004	7924	99,0	7992	7904	98,9	-0,1
43	7953	7850	98,7	7930	7827	98,7	0
44	7710	7610	98,7	7682	7590	98,8	+0,1
45	7399	7303	98,7	7371	7275	98,7	0
46	7262	7160	98,6	7226	7132	98,7	+0,1
47	6998	6900	98,6	6866	6790	98,9	+0,3
48	6791	6710	98,8	6694	6607	98,7	-0,1
49	6640	6560	98,8	6572	6480	98,6	-0,2
50	6525	6440	98,7	6398	6315	98,7	0
51	6203	6122	98,7	6120	6040	98,7	0
52	5895	5812	98,6	5824	5742	98,6	0
53	5558	5480	98,6	5469	5392	98,6	0
54	5138	5066	98,6	5091	5020	98,6	0
Итого:	239821	231774	96,5	239103	230924	96,6	+0,1

Исходя из полученных данных, мы видим, что инкубационных яиц в контрольной группе было получено 96,5 %, а в опытной – 96,6 %. Таким образом, можно заключить, что подсадка петухов не снизила яйценоскость птицы в опытной группе.

В ходе опыта было установлено, что выход оплодотворенных яиц за период опыта в опытной группе составил 80,9 %, что выше по сравнению с контрольной группой 3,0 п.п.

В таблице 2 приведены данные, полученные в ходе исследований по выводу молодняка.

Таблица 2 – Вывод молодняка, %

Период	Контрольная группа			Опытная группа			
яйце-	количество	количество	вывод	количество	количество	вывод	
носко-	выведенного	заложенных	здорово-	выведенно-	заложенных	здорового	± п. п.
сти,	здорового	на инкуба-	го мо-	го здорово-	на инкуба-	молодня-	工 11. 11.
нед.	молодняка,	цию яиц,	лодняка,	го молодня-	цию яиц,	ка, %	
	гол.	ШТ.	%	ка, гол.	ШТ.		
25	2112	3087	68,4	2157	3112	69,3	+0,9
26	4758	6915	68,8	4810	6911	69,6	+0,8
27	6220	9040	68,8	6430	9160	70,2	1,4
28	6674	9548	69,9	6725	9553	70,4	+0,5
29	7142	9730	73,4	7153	9706	73,7	+0,3
30	7217	9793	73,7	7259	9809	74	+0,3
31	7410	9725	76,2	7464	9770	76,4	+0,2
32	7315	9500	77	7358	9544	77,1	+0,1
33	7143	9350	76,4	7190	9350	76,9	+0,5
34	7115	9145	77,8	7131	9142	78	+0,2
35	6937	8882	78,1	6937	8860	78,3	+0,2
36	6835	8853	77,2	6843	8796	77,8	+0,6
37	6620	8608	76,9	6595	8565	77	+0,1
38	6458	8442	76,5	6402	8402	76,2	-0,3
39	6267	8225	76,2	6187	8151	75,9	-0,3
40	5983	8074	74,1	6074	8056	75,4	+1,3
41	5892	7920	74,4	5911	7923	74,6	+0,2
42	5816	7924	73,4	5928	7904	75	+1,6
43	5817	7850	74,1	5925	7827	75,7	+1,6
44	5548	7610	72,9	5571	7590	73,4	0,5
45	5192	7303	71,1	5143	7275	70,7	-0,4
46	4905	7160	68,5	4957	7132	69,5	+1,0
47	4609	6900	66,8	4563	6790	67,2	+0,4
48	4455	6710	66,4	4790	6607	72,5	+6,1
49	4264	6560	65	4847	6480	74,8	+9,8
50	4147	6440	64,4	4818	6315	76,3	+11,9
51	3955	6122	64,6	4741	6040	78,5	+13,9
52	3720	5812	64	4502	5742	78,4	+14,4
53	3474	5480	63,4	4173	5392	77,4	+14,0
54	3192	5066	63	3855	5020	76,8	+13,8
Итого:	167192	231774	71,4	172442	230924	74,6	+0,2

Исходя из полученных в ходе опыта данных, мы видим (таблица 2), что на 48 неделе жизни наблюдается увеличение разницы в получении молодняка между опытной и контрольной группами. На 48 неделе жизни разница составила 6,1 %, а в последующие 6 недель выросла до 13,8 %. Итоговые значения по выводу здорового молодняка составили в среднем для опытной группы 74,6 %, что больше на 0,2 п.п. по сравнению с контрольной группой. Вышеуказанные данные показывают, что спайкинг позволил получить большее количество выведенного здорового молодняка по сравнению с группой, где спайкинг не применялся.

В наших исследованиях кондиционных цыплят во второй группе было получено 172440 голов, или на 5248 голов больше по сравнению с контрольной группой, что несомненно повлияло на экономические показатели.

Расчет экономической эффективности показал, что при использовании спайкинга в условиях производства за период опыта было получено дополнительного дохода в размере 6192 рубля 64 копейки по сравнению с контролем. В пересчете на всю партию в птичнике, разница в прибыли при внедрении данного метода составит 44622 рубля 72 копейки, или 3,0 %.

Заключение. Исходя из вышеизложенного, можно заключить, что применение спайкинга в возрасте 43 недель позволило добиться повышения воспроизводительных качеств кур родительского стада мясного кросса «Росс–308», что оказало положительное влияние на выход кондиционных цыплят и экономическую эффективность полученных результатов.

Литература. 1. Дулич, А. С. Направления развития птицеводства в Республике Беларусь / А. С. Дулич, Е. М. Исаченско // Материалы Международной научно-практической конференции студентов и магистрантов. – Минск : БГАТУ, 2021. – С. 146. 2. Кудинова, М. Г. Тенденции и перспективы развития производства продукции птицеводства: отечественный и зарубежный опыт / М. Г. Кудинова, Е. А. Леонов // Инженерное обеспечение в реализации социально-экономических и экологических программ АПК : сборник статей по материалам Международной научно-практической конференции, Курган, 24 марта 2022 года / Под общей редакцией С.Ф. Сухановой. – Курган : Курганская государственная сельскохозяйственная академия им. Т.С. Мальцева, 2022. – С. 352–357. З. Меднова, В. В. Зоогигиенические условия выращивания цыплят-бройлеров на подстилке / В. В. Меднова. Т. И. Хорошилова // Материалы Всероссийской с международным участием научной конференции молодых ученых и специалистов, посвященной 155-летию со дня рождения Н. Н. Худякова. - Москва, 2021. - С. 149. 4. Микрюкова, О. С. Влияние подсадки петухов на инкубационные качества яиц / О. С. Микрюкова // Современное развитие зоотехнической науки и практики животноводства : матер. регион. науч.-практич. конф. - Пермь, 2012. - С. 46-49. 5. О государственной программе «Аграрный бизнес» на 2021–2025 годы: [Электронный ресурс] // Национальный правовой Интернет-портал Республики Беларусь. – Минск, 2021. – Режим доступа: https://pravo.by/upload/docs/op/C22100059_1612904400.pdf. – Дата доступа: 01.06.2022. 6. Ракецкий, П. П. Промышленное птицеводство Беларуси : монография / П. П. Ракецкий, Н. В. Казаровец ; под общей ред. П. П. Ракецкого. – Минск : БГАТУ, 2009. – 440 с. 7. Фисинин, В. И. Основные тенденции в мировом и отечественном производстве / В. И. Фисинин // Животноводство России. – 2022. - C. 2-4.

Поступила в редакцию 12.03.2024.

УДК 636.2:612.017.2

АДАПТАЦИОННЫЕ СПОСОБНОСТИ КРУПНОГО РОГАТОГО СКОТА АБЕРДИН-АНГУССКОЙ ПОРОДЫ В УСЛОВИЯХ СЕВЕРНОГО РЕГИОНА РЕСПУБЛИКИ БЕЛАРУСЬ

Подрез В.Н., Казьмин Д.О.

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Представлены результаты исследования адаптационных способностей молодняка крупного рогатого скота абердин-ангусской породы, полученного в условиях северного региона Республики Беларусь, на основании оценки живой массы, среднесуточного прироста бычков и телочек от рождения до восемнадцатимесячного возраста, морфологических и биохимических показателей крови в конкретных условиях разведения. У подопытного поголовья все клинические показатели находились в пределах физиологической нормы для крупного рогатого скота. Средняя живая масса к восемнадцатимесячному возрасту у бычков составила 530,7 кг, а телочек — 476 кг, что свидетельствует о нормальном протекании адаптационного процесса. Ключевые слова: абердин-ангусская порода, мясное скотоводство, молодняк, адаптация, среднесуточный прирост живой массы, кровь.

ADAPTIVE ABILITIES OF ABERDEEN-ANGUS CATTLE IN THE CONDITIONS OF THE NORTHERN REGION OF THE REPUBLIC OF BELARUS

Podrez V.N., Kazmin D.O.

Vitebsk State Academy of Veterinary Medicine, Vitebsk, Republic of Belarus

The article presents the results of a study of the adaptive abilities of young Aberdeen Angus breed, obtained in the conditions of the northern region of the Republic of Belarus on the basis of an assessment of live weight, the aver-