ю, г. зелютков,

Витебский ордена "Знак Почета" ветеринарный институт им. Октябрьской революции

ЭПИЗООТОЛОГИЯ И СРАВНИТЕЛЬНАЯ ЭФФЕКТИВНОСТЬ МЕТОДОВ ПИАГНОСТИКИ РОТАВИРУСНОЙ ИНФЕКЦИИ ТЕЛЯТ

В настоящее время базовой основой интенсификации животноводства является формирование крупных специализированных хозяйств с промышленной технологией получения животноводческой продукции. Однако у этого перспективного направления ведения животноводства наряду с неоспоримыми преимуществами имеются и негативные стороны, которые при нарушении технологических норм и имеющихся порой издержек санитарно-гигиенического порядка приводят к быстрому и массированному распространению пневмоэнтеритов молодняка, в частности инфекционной этиологии.

Инфекционные болезни желудочно-кишечного тракта новорожденных телят наносят значительный экономический ущерб крупным животноводческим комплексам. Энтериты новорожденных телят имеют многофакторную этиологию, но среди вирусных агентов ведущее этиологическое значение отведено рота- и коронавирусам [2, 11, 12, 14]. Доказательством тому служит экспериментальное воспроизведение энтеритов рота- и коронавирусной этиологии в результате заражения телят, лишенных молозива, и гнотобиотов. Заболеваемость данными инфекциями может достигать 30 — 70% от всех родившихся телят, летальность среди них составляет 15 — 30%.

В инфекционной патологии новорожденных телят ротавирусам отведено особое место, так как они имеют широкое распространение, а также ввиду отсутствия надежного специфического средства их профилактики и лечения. Кроме того, при ротавирусной инфекции клинико-эпизоотологические и патолого-анатомические данные позволяют лишь предположить причину заболевания или гибели животного.

В связи с этим возникает острая необходимость в разработке простых и достоверных методов диагностики ротавирусной инфекции, которые бы позволили дифференцировать этиологию болезни. Следовательно, четкая и информативная диагностика ротавирусной инфекции среди новорожденных телят является ключевым фактором ее искоренения.

В настоящее время диагностика ротавирусной инфекции базируется на иммунологических методах, таких как реакция диффузионной преципитации [6], реакция иммунной флуоресценции [1, 7, 10, 12, 13], реакция связывания комплемента [2, 5, 16], электронная микроскопия [13, 14], основанных на индикации антигенов в пробах сыворотки крови больных или переболевших животных.

В последнее время при диагностике вирусных болезней стали чаще использовать иммуноферментный анализ (ИФА). К основным достоинствам этого метода можно отнести высокую чувствительность, специфичность, диагностическую информативность, а при наличии реактивов диагностику-

мов и специального оборудования — полную автоматизацию процесса, при котором сокращаются сроки выявления антигенов и антител, что очень важно при проведении массовых исследований.

Возможность использования иммуноферментного анализа при диагностике ротавирусной инфекции определена и описана в работах некоторых исследователей [7, 8, 17]. К настоящему времени предложено несколько вариантов ИФА, но более перспективным и приемлемым является твердофазный метод, при котором применяется адсорбционная иммобилизация антител или антигенов на поверхности полимерных материалов. В качестве твердой фазы используются различные носители, где связь компонентов реакции осуществляется адсорбционно и ковалентно.

В связи с указанным выше целью наших исследований явилось обнаружение ротавирусного антигена в пробах фекалий телят с признаками диареи, выявление специфических антител в сыворотке крови телят с симптомами поражения желудочно-кишечного тракта, определение эффективности ИФА при использовании различных полистироловых плашек, изучение некоторых эпизоотологических аспектов ротавирусной инфекции.

В опытах использовали пробы фекалий новорожденных телят с признаками диареи, находящихся в различных хозяйствах, стационарно неблагополучных по желудочно-кишечным заболеваниям; пробы сыворотки крови от телят с выраженными симптомами поражения кишечника; ротавирусный антиген; антиротавирусную сыворотку; иммуноглобулины, выделенные из гипериммунной антиротавирусной сыворотки (диагностикумы получены из ВИЭВ); антитела диагностические против иммуноглобулинов быка, меченные пероксидазой (диагностикум получен из Института эпидемиологии и микробиологии им. Н. Ф. Гамалеи); полистироловые плашки отечественного и зарубежного производства с различной формой дна лунок; антивидовую флуоресцирующую сыворотку против глобулинов быка (получена из НИИ им. Н. Ф. Гамалеи); 0,5%-ную суспензию эритроцитов мышей.

Иммуноферментный анализ проводили в соответствии с методическими рекомендациями [8] для выявления ротавирусного антигена и специфических антител. В качестве твердой фазы были использованы полистироловые плашки.

С целью индикации ротавирусного антигена и антиротавирусных антител применяли непрямой модифицированный вариант ИФА в форме "сэндвич".

Учет результатов ИФА проводили визуально. Сформировавшийся специфический комплекс выявляли обработкой лунок полистироловых плашек субстратом данного фермента (раствор 5-аминосалициловой кислоты в присутствии перекиси водорода), дающего в процессе реакции коричневый цвет.

В хозяйствах, где проводился отбор проб фекалий и проб сыворотки крови, изучалась также и эпизоотическая ситуация в отношении ротавирусной инфекции. При этом установлено, что ротавирусная инфекция в

"чистом виде" наблюдается чаще всего среди животных 3 – 18-дневного возраста. Как правило, в хозяйстве заболевает вначале низкорезистентный молодняк, а затем, по мере возрастания вирулентности ротавируса, вследствие пассирования в процесс вовлекаются и другие животные.

Наибольшее количество случаев заболевания зарегистрировано в зимне-весенний период. На наш взгляд, определяющим моментом в возникновении заболевания является наличие (в хозяйствах) значительного количества животных-вирусоносителей и неудовлетворительное проведение санации помещений при нарушении режима дезинфекции.

Клиническая картина заболевания животных характеризуется различной степенью угнетения, утратой аппетита, увеличением температуры тела до 40,8°C, прогрессирующей диареей. При этом акт дефекации учащен, фекальные массы жидкой, водянистой консистенции, грязноватого или соломенно-желтого цвета, порой с примесью слизи, крови. Следует отметить, что в это время, как правило, происходит наложение колиинфекции или коронавирусной инфекции, и заболевание в таком случае протекает очень тяжело, часто заканчиваясь летально. При моноинфекции и наллежащих условиях кормления и содержания, а также при проведении соответствующего лечения больные животные выздоравливали. В некоторых хозяйствах была отмечена повторная вспышка заболевания, что, на наш взгляд, связано с нарушением и несоблюдением последовательности проведения мероприятий по оздоровлению хозяйства. При этом среди новорожденных телят, как правило, отмечалась осложненная форма ротавирусной инфекции, характеризующаяся тяжелым течением болезни, которая сопровождалась значительным отходом животных.

В период появления характерных клинических признаков болезни, преимущественно в первые часы, проводили отбор проб фекалий непосредственно из прямой кишки, в которых путем применения РИД, РИФ и ИФА выявляли ротавирусный антиген.

При постановке РИД использовали тест-систему ВИЭВ, в РИФ, осуществляя постановку в непрямом варианте, применяли антиротавирусную сыворотку с последующей обработкой препаратов антивидовой флуоресцирующей сывороткой. Проведение реакций сопровождали необходимыми контролями.

В качестве испытуемых антигенов использовали надосадочную жидкость 50%-ной суспензии проб фекалий, приготовленную на изотоническом растворе хлорида натрия. При постановке РИФ 50%-ную суспензию проб фекалий подвергали повторному центрифугированию при 4500 мин⁻¹ в течение 20 мин. Полученный осадок, содержащий эпителиальные клетки слизистой оболочки кишечника, ресуспендировали в небольшом объеме изотонического раствора и использовали для приготовления препаратов для РИФ.

Перед постановкой серологических реакций исключали наличие в препаратах колиинфекции (микробиологическое исследование) и коронавирусной инфекции (РГА с 0,5%-ной суспензией эритроцитов мышей) обработкой эфиром.

При проведении люминесцентной микроскомии установлено наличие в препаратах различного количества светящихся клеток в одном поле зрения с неодинаковой интенсивностью флуоресценции. На наш взгляд, это во многом определяется стадией заболевания (для приготовления препаратов лучше использовать пробы фекалий, полученные в первые сутки проявления клинических признаков болезни) и временем доставки проб фекалий в лабораторию с последующим немедленным приготовлением препаратов. Реакция иммунной флуоресценции является малоэффективной при приготовлении препаратов непосредственно в хозяйстве (без центрифугирования) и при использовании для приготовления препаратов проб фекалий позже 24 ч после их получения. В первом случае значительное количество серонегативных результатов можно объяснить низкой концентрацией эпителиальных клеток, инфицированных ротавирусом, во втором выявление незначительного количества светящихся клеток в препаратах, вероятно, можно констатировать за счет их лизиса.

При позитивных результатах РИФ отмечали наличие яркого желтозеленого свечения в виде гранул, а иногда и разлитого свечения цитоплазмы эпителиальных клеток, инфицированных ротавирусом. Препараты изучались в трехкратной повторности.

Часть приготовленной суспензии проб фекалий параллельно использовали в качестве антигена в РИД и при постановке иммуноферментного анализа. Постановку РИД осуществляли по общепринятой методике, а ИФА проводили в следующей последовательности:

- 1. В каждую лунку полистироловых плашек вносили по 1 2 капли иммуноглобулинов (İg получен из ВИЭВ). Плашки закрывали крышкой и оставляли на ночь в эксикаторе при комнатной температуре. Нами при постановке ИФА были использованы принадлежности микротитратора "Такачи".
- 2. Спустя 16 18 ч панели тщательно промывали твинкалийфосфатным буфером (ТФБ солержит 0.05% твин-20) с рН 7.4.
- 3. После указанной манипуляции в каждую лунку вносили по 1-2 капли $T\Phi B$, а затем в каждую первую лунку плашки вносили равный объем суспензии проб фекалий в разведении 1:50 и готовили последовательные двойные разведения. Затем плашки помещали в эксикатор и оставляли на ночь при комнатной температуре.
- 4. После указанной экспозиции каждую лунку плашки тщательно промывали ТФБ с pH 7,4.
- 5. Затем в каждую лунку плашки вносили по 1 2 капли иммуноглобулина кролика, меченного пероксидазой и полученного к глобулинам быка. Режим обработки и экспозиция были прежними.
- 6. Спустя 16 18 ч все лунки плашек тщательно промывали ТФБ с pH 7.4.
- 7. Для определения результатов реакции в отмытые лунки плашек вносили по 1-2 капли пероксидазного конъюгата, содержащего смесь раствора 5-аминосалициловой кислоты (9 частей) и перекиси водорода (1 часть).

Таблица 1. Результаты выявления ротавирусного антигена

Хозяйства	Колич е - ство исход- ных проб	Результаты реакции						
		РИД		РИФ		ИФА -		
		количе- ство положи- тельных проб	резуль- тат, %	количест- во проб	резуль- тат, %	количе- ство положи- тельных проб	резуль- тат, %	
Совхоз "Лосвидо"	45	9	20,0	18	40,0	42	93,3	
Учхоз "Подберезье"	35	6	17,1	12	34,2	31	88,5	
Совхоз "Мишневичи"	19	3	15,8	6	31,5	15	78,9	
Колхоз им. Кирова	27	5	18,5	11	40,7	22	81,4	

Таблица 2. Результаты выявления ротавирусных антител

		Результаты реакций					
1.1	Количество	РИ	Д	ИФА			
Хозяйства	исход- ных проб	количест- во положи- тельных проб	резуль- тат, %	количест- во положи- тельных проб	резуль- 181, %		
Совхоз "Лосвидо"	85	35	41,1	65	81,1		
Учхоз "Подберезье"	65	28	43,1	63	96,9		
Совхоз "Мишневичи"	57	23	40,3	56	98,2		
Колхоз им. Кирова	82	38	46,3	78	95,1		
Экспериментальная база "Тулово"	88	28	31,8	59	88,6		
Колхоз "Память Ильича"	72	28	38,8	59	81,9		
Совхоз им. Ленина	58	21	36,2	46	79,3		
Колхоз им. Энгельса	59	22	37,2	49	83,0		

8. Плашки выдерживали при комнатной температуре 5 — 15 мин и проводили учет результатов реакции по окончании проявления интенсивности коричневой окраски в специфических контролях. Ход реакции можно остановить на последнем этапе внесением в каждую лунку по 1 капле 5Н НС1.

Оценку результатов реакции проводили визуально по интенсивности коричневой окраски, которую оценивали в плюсах:

- 4+ интенсивное коричневое окрашивание лунок плашки;
- 3+ коричневое окрашивание лунок;
- 2+ нежный коричневый оттенок;
- - интенсивность окраски на уровне отрицательных контролей.

Установлено, что интенсивность окраски пропорциональна содержанию искомого компонента в исследуемом материале. Постановку ИФА

сопровождали необходимыми контролями, обеспечивающими безусловную специфичность.

Следует отметить совпадение результатов реакций во всех случаях. Максимальное разведение, где еще отмечалась положительная реакция ИФА, составляло 1:3200.

Для исследования проб сыворотки крови телят 3 — 18-дневного возраста с симптомами диареи нами были использованы РИД и ИФА. Причем ИФА проводили в такой же последовательности, что и в первом случае, с той лишь разницей, что на первом этапе сенсибилизацию лунок плашки проводили стандартным ротавирусным антигеном с последующим внесением и раститровкой исследуемых проб сыворотки крови. Всего в каждой реакции было исследовано 917 проб из 16 хозяйств Витебской, Минской и Брестской областей (табл. 1 и 2).

Совпадение результатов реакций установлено во всех случаях и более чем в 60% случаев отмечено совпадение результатов реакций как при обнаружении ротавирусного антигена, так и антиротавирусных антител. Максимальное разведение ИФА при выявлении антител составило 1: 4096. Необходимо отметить, что во всех хозяйствах, из которых был доставлен материал для исследования, было установлено наличие ротавирусной инфекции. Около половины проб сыворотки крови и все пробы фекалий в ИФА параллельно были исследованы с использованием плашек отечественного и зарубежного производства. При визуальной оценке установлена полная идентичность результатов независимо от типа плашек и формы их дна.

Выводы

- 1. В целях ранней диагностики ротавирусной инфекции у новорожденных телят наиболее перспективным является использование ИФА.
- 2. Тест-система, разработанная в ВИЭВ и предназначенная для РИД, РИФ и ИФА, обладает достаточно высокой специфичностью и может быть использована в производственных лабораториях для диагностики ротавирусной инфекции.
- 3. Иммуноферментный анализ характеризуется высокой чувствительностью и специфичностью, а результаты ИФА при визуальной оценке не зависят от формы лунки и места изготовления плашек.
- 4. При постановке РИФ с целью выявления ротавирусного антигена в пробах фекалий необходимо использовать свежий материал с обязательным его концентрированием.

ЛИТЕРАТУРА

- 1. Бабурина Т. М., Пантелеев Ю. В., Самойлов П. П. Обнаружение ротавирусного антигена телят методом прямой РИФ //Пробл. вирусологии, молекуляр. биологии, гистологии с.-х. животных: Сб. науч. тр. / МВА.-М., 1983. С. 28 30.
- Бугаева Л. И., Пантелеев Ю. В. РСК при изучении ротавирусной инфекции телят // Пробл. вирусологии, молекуляр. биологии, гистологии с.-х. животных: Сб. науч. тр. / МВА÷М., 1983. — С. 25 — 27.

- 3. Коромыслов Γ . Ф., Авилов В. С., Лебедев А. И., Гоголев М. М. Рота- и коронавирусы и их роль в этиологии диареи новорожденных телят // Сел. хоз-во за рубежом. 1980, № 6. С. 51-54.
- 4. Коромыслов Г. Ф., Авилов В.С., Мникова Л. А., Гоголев М. М. Применение иммуноферментного анализа в диагностике ротавирусной инфекции крупного рогатого скота // Тр. ВИЭВ. 1984. 1960. 1984. —
- 5. Матюгина Н. И., Гоголев М. М., Авилов В. С. Применение РСК для обнаружения ротавируса крупного рогатого скота и выявление специфических антител к нему // Тр. ВИЭВ. 1983. Т. 58. С. 19 22.
- Методические рекомендации по индикации ротавируса крупного рогатого скота и выявление к нему антител методом диффузионной преципитации / ВАСХНИЛ. Отд-ние ветеринарии; разраб.: М. М. Гоголевым и др. — М., 1981. — 9 с.
- 7. Методические рекомендации по индикации ротавируса крупного рогатого скота и выявлению к нему антител непрямым методом иммунофлуоресценции / ВАСХНИЛ. Отд-ние ветеринарии; разраб.: Л. А. Мниковой и др. М., 1981. 12 с.
- 8. Методические рекомендации по применению метода иммуноферментного анализа для выявления ротавируса и специфических антител / ВАСХНИЛ. Отд-ние ветеринарии; разраб.: Г. Ф. Коромысловым и др. — М., 1984. — 11 с.
- 9. Мникова Л. А., Авилов В. С., Гоголев М. М. Применение иммуноферментного анализа в диагностике ротавирусной инфекции крупного рогатого скога // Бюлл. ВИЭВ / ВАСХНИЛ. 1985. Вып. 58. С. 26 29.
- 10. Нди Кристофер. Применение РИФ для диагностики ротавирусной диареи новорожденных телят: Автореф. дис. ... канд. вет. наук. Киев, 1985. 23 с.
- 11. Acres S. D., Babiuk L. A. Studies on rotaviral antibody in bovine serum and lactal secretions, using radioimmunoassay // J. Amer. Vet, Med. Assn. 1978. V. 173, N 5(2). P. 551-559.
- 12. Barnet B. B, Spendlone R. S., Peterson M. W., Hsu Z. G., Lasalle V. A., Egberg Z. N. Immunofluorescent cell assay of neonatal calf diarrheavirus // Cen. J. Comp. Med. 1975, V. 30. N. 64. P. 462 465.
- 13. Bridger J. C., Wood G. N. Neonatal calf diarrhea: Identification of a reavirus-like (rotavirus) agent in faeces immunoelectron microscopy // Brit. vet. J. 1975. V. 131, N. 5. P. 528 535.
- 14. England J., Erje C. S., Enright E. A. Negative contast electron microscopic diagnosis of viruses of neonatal calf diarrhea // Cornell. Veter. 1976. V. 66, N 2. P. 172 182.
- 15. Ness R. The diagnosis of rotaviral infection // N. D. Farm. Res. 1981. V. 38, N 4. P. 16 17.
- 16. Takashi E., Inada J., Hitoshi H., Sato K., Satoda K., Omori T. Complement fixation test of Nebrasca laft diarrhea with serum // Nat. Just. Anim. Heth. Quart. 1977. V. 17, N 2. P. 33 38;
- 17. Wood G. N. Epizootologi of rotaviral bovine infection // Veter. Record. 1978. V. 103, N 3. P. 44 46.