Результаты исследования крыс были проведены через 1, 7 и 30 дней после прекращения облучения. Количество лейкоцитов и эритроцитов в периферической крови на фоне применения эраконда имеет достоверные различия с облученным контролем. Также отмечается более выраженный процесс восстановления лейкоцитов и эритроцитов на фоне применения препарата [3].

Заключение. Анализируя полученные данные, можно предположить, что фитопрепара тэраконд способствует накоплению эндогенных защитных соединений и понижению концентрации веществ непрямого действия радиации. Применение данного препарата положительно влияет на функциональную активность кроветворной системы при неоднократном облучении животных в малых дозах.

Это важное свойство препарата позволяет считать перспективным его использование для повышения, как радиорезистентности, так и общей резистентности организма.

Литература: 1. Гончаренко, Е. Н. Гипотеза эндогенного фона радиорезистентности / Е. Н. Гончаренко, Ю. Б. Кудряшов. — М. : Изд-во МГУ, 1980. — 176 с. 2. Сафонов, В. Ю. О влиянии фитопрепаратов на радиорезистентность организма / В. Ю. Сафонов // Вестник ОГУ. — 2005. — № 4. — С. 92-96. 3. Сафонов, В. Ю. Иммунобиологическая оценка состояния облученных животных и способы повышения радиорезистентности организма : автореф. дис. ...д-ра биол. наук / В. Ю. Сафонов ; ФГОУ ВПО ОГАУ. — Оренбург, 2009. — 46 с. 4. Цуркан, О. Р. Элиминационные свойства фитопрепарата эраконд / О. Р. Цуркан // Ветеринарный врач. — 2001. — № 2(6). — С. 50-52.

УДК 631.145: 614.876

КУРАКЕВИЧ Е.О., студент

Научный руководитель ЛАНЦОВ А.В., старший преподаватель

УО «Витебская ордена «Знак почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь.

ВЛИЯНИЕ РАДИОЛОГИЧЕСКОГО ИЗЛУЧЕНИЯ НА ЗДОРОВЬЕ ЧЕЛОВЕКА

Введение. Тридцать восемь лет назад Беларусь столкнулась с ситуацией, которую в современном антикризисном управлении относят к категории «полная неизвестность». Все пришлось создавать с нуля, так как не было не только специалистов узкой квалификации (дозиметристов, специалистов по дезактивации объектов), но и работников широкого профиля с радиологической специализацией. А они требовались в области медицины, экологии, сельского и лесного хозяйств, образования, психологии, юриспруденции. И наша страна приняла этот вызов. В короткие сроки был заложен крепкий фундамент управления постчернобыльской ситуацией. Катастрофа на Чернобыльской

атомной электростанции, произошедшая 26 апреля 1986 года, оказала невиданное воздействие на окружающую среду и здоровье людей. Одним из самых серьезных последствий аварии стали радиологические последствия, которые ощущаются и сегодня.

Экспозиция к радиации вызывает различные заболевания и повреждения органов человека. В тот момент, когда реактор на Чернобыльской АЭС взорвался, в атмосферу было выброшено огромное количество радиоактивных веществ, в результате чего происходило облучение крупных территорий Украины, Белоруссии и России. Впервые дни после аварии были сильно облучены ликвидаторы, которые сразу же принялись за тушение пожара и обезвреживание последствий катастрофы [3].

Целью исследования является изучение радиологических последствий катастрофы на Чернобыльской АЭС.

Материалы и методы исследования. Материалы и методы исследования, посвященные радиологическим последствиям катастрофы на Чернобыльской АЭС, включают в себя широкий спектр научных подходов и методов, направленных на оценку воздействия радиации, на окружающую среду, живые организмы и человеческое здоровье.

При написании статьи были изучены материалы различных источников, в том числе — интернет-ресурсы. В ходе работы применены методы сравнительного анализа, эмпирические методы и обобщение.

Результаты исследования. Среди наиболее распространенных радиационных заболеваний, которые развиваются у людей, подвергшихся облучению на Чернобыльской АЭС, можно выделить рак крови (лейкемия), рак щитовидной железы, рак легких, рак кожи и другие опухоли. Кроме того, возникают хронические заболевания щитовидной железы, костной системы, легких и других органов.

Особую опасность представляют радионуклиды, проникающие в организм через пищу и воду. Они накапливаются в тканях и органах, вызывая мутации в генетическом материале, что может привести к наследственным заболеваниям и даже смерти потомства. Чрезмерная экспозиция к радиации может также привести к иммунодефицитам, бесплодию, абортам и другим проблемам с репродуктивной системой.

Перечень радиологических последствий:

- 1. Раковые заболевания: из-за высокого уровня радиации в результате аварии на Чернобыльской АЭС, увеличилось число раковых заболеваний среди людей, находившихся в зоне отчуждения. В среднем по республике Беларусь в 7 раз, по раку щитовидной железы в Гомельской области в 22 раза, а в отдельных районах в 40 раз, а в среднем по республике заболеваемость раком щитовидной железы увеличилась в 13 раз [1, 2];
- 2. Мутации генов: радиационное излучение может вызывать мутации в генетическом материале, что приводит к возникновению наследственных заболеваний у потомства (делеция, транслокация, точечная мутация и т.д);

- 3. Повреждение органов: высокая доза радиации может повредить органы и ткани человека, что приводит к появлению различных заболеваний и нарушениям функций организма: потеря репродуктивных функций, развитие злокачественных новообразований;
- 4. Заболевания щитовидной железы: из-за воздействия радиации, у людей, находившихся в зоне аварии, увеличилось число заболеваний щитовидной железы, включая рак этого органа. У детей диффузный нетоксический зоб, рак (карциномы), аутоиммунный тиреоидит; у взрослых доброкачественные узлы железы, гипотиреоз и аутоиммунный тиреоидит с недостаточностью щитовидной железы или без нее [1].

Заключение. В результате анализа радиологических последствий катастрофы на Чернобыльской АЭС можно сделать вывод о масштабности и серьезности данного события для окружающей среды, человеческого здоровья и всей территории, затронутой аварией. Воздействие радиации на организм человека ощущается даже спустя десятилетия после катастрофы. Результаты многих научных исследований свидетельствуют о том, что последствия Чернобыльской катастрофы затронули человечество на поколения вперед. Безусловно, изучение и учет радиологических последствий Чернобыля играют важную роль в разработке мер по обеспечению безопасности ядерной энергетики и защите окружающей среды от подобных катастроф в будущем.

Литература. 1.Онищенко Г.Г. Чернобыль - 30 лет спустя. Радиационно гигиенические и медицинские последствия аварии // Радиационная гигиена. 2016. Т. 9, № 2. С. 10-19. 2. Радиологические последствия и уроки радиационных аварий на Чернобыльской АЭС и АЭС «Фукусима-1» - Г. Г. Онищенко, А. Ю. Попова, И. К. Романович, 2021 — 11 с. 3. Радиационно-гигиенические аспекты преодоления последствий аварии на Чернобыльской АЭС / Под ред. акад. РАН Г.Г. Онищенко и профессора А.Ю. Поповой. СПб.: НИИРГ им. проф. П.В. Рамзаева, 2016. Т.1. 448 с.