КЛИНИКО-ПАТОМОРФОЛОГИЧЕСКИЕ И ГЕМАТОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ ПРИ СМЕШАННОМ ТЕЧЕНИИ КОКЦИДИОЗА И КОЛИБАКТЕРИОЗА ЦЫПЛЯТ

В условиях промышленного птицеводства большая концентрация поголовья на сравнительно малой площади благоприятствует возникновению и быстрому распространению заразных заболеваний. С этим связано появление так называемых индустриальных болезней — респираторный микоплазмоз, колибактериоз, болезнь Марека и др. [5]. По-прежнему широко распространены и наносят большой экономический ущерб кокцидиозы.

С развитием интенсивного птицеводства участились случаи смешанного течения инфекционных и инвазионных болезней. На смешанные инфекции приходится 30% случаев заболеваний вирусной этиологии [9]. В большинстве опубликованных работ изучались самостоятельно протекающие, так называемые чистые болезни, но есть сообщения о том, что кокцидиозы во многих случаях проявляются в ассоциации с гельминтозами и инфекциями.

Отмечается, что причиной гибели цыплят в хозяйствах часто бывают смешанные инвазионные и инфекционные заболевания — кокцидиоз + трихомоноз + гетеракидоз + пуллороз, аспергиллез, лейкоз и другие [10], кокцидиоз + паратиф [4], кокцидиоз + диплококковая септицемия [7], кокцидиоз + пуллороз [2,3], кокцидиоз + болезнь Марека [1], кокцидиоз + пуллороз + аскаридиоз + трихомоноз [6].

Отмечается, что при смешанном течении кокцидиоза и колибактериоза гибель цыплят может доходить до $78^{\circ}/_{\circ}$ [8]. Нам неоднократно приходилось отмечать смешанное течение кокцидиоза и колибактериоза цыплят. При копрологическом исследовании обнаруживали до 1100 ооцист в поле зрения микроскопа, а бактериологически из трупов цыплят выделяли патогенные штаммы $E.\ coli$ серотипов $01,\ 02,\ 078,\ 0111,\ 0115.$

С целью изучения клинико-патоморфологических признаков и некоторых вопросов патогенеза мы в условиях клиники провели опыты на 100 цыплятах 30—70-дневного возраста. Содержали молодняк в клетках. Кормили специальными комбикормами по нормам.

Подопытных цыплят разделили на четыре группы: І группу заразили кокцидиями; ІІ — кокцидиями и *E. coli*; ІІІ — *E. coli*, ІV группу не заражали (контроль).

Для заражения рег оѕ использовали смесь инвазионных ооцист *E. tenella, E. acervulina, E. necatrix, E. mitis, E. maxima, E. praecox* в дозе 20 тыс. ооцист на голову и патогенным штаммом *E coli* серотипа 01 в дозе 3 млрд. м. к. Культуры выделены от птиц из неблагополучного хозяйства.

За цыплятами вели ежедневное клиническое наблюдение, следили за ростом и развитием. Копрологическими исследованиями выявляли интенсивность кокцидиозной инвазии, длительность препатентного и патентного периодов. Бензидиновой пробой устанавливали время появления в фекалиях скрытой крови. В периферической крови, которую брали из подкрыльцовой вены на 3, 5, 10, 15, 20, 30 и 40-й день после заражения, у пяти цыплят из каждой группы определяли количество эритроцитов, лейкоцитов, тромбоцитов, гемоглобина, лейкоформулу и РОЭ по общепринятым методикам.

Опыты показали, что при одновременном заражении кокцидиями и E. coli у цыплят II группы инкубационный период короче, чем в I и III

грушпах. Уже на 3-4-й день отмечается угнетение, отказ от корма и воды, повышение температуры тела на $1-1.5^{\circ}$, понос с примесью крови. Имели место также нервные явления, артриты, нерезко выраженные отеки в области головы, конечностей, кровоизлияния в области затылочноатлантного сустава. На вскрытии обнаруживали истощение, студенистую инфильтрацию подкожной клетчатки, анемию, катаральный или катарально-геморрагический энтерит, тифлит, резкое уменьшение величины фабрициевой сумки, тимуса и селезенки. Интенсивность кокцидиозной инвазии во II группе была значительно выше, чем в первой. В то же время латентный период был длиннее на 3—5 дней.

У цыплят, зараженных кокцидиями, наблюдали угнетение, отказ от корма, на 5—6-й день после заражения понос с примесью крови. На вскрытии изменения обнаруживали в кишечнике (в слепых отростках) в виде геморрагического тифлита. В тонком отделе чаще всего наблюдали катаральный или катарально-геморрагический энтерит, а также кровоизлияния на слизистой и серозной оболочках. Температура тела, как правило, была в пределах нормы. Скрытая кровь в фекалиях цыплят I и II групп обнаруживалась на 3—4-й день после заражения.

У молодняка, зараженного только E. coli, в большинстве случаев наблюдалось незначительное угнетение, снижение аппетита, иногда понос. На вскрытии находили катаральный энтерит, увеличение селезенки, геморрагии под эпикардом и эндокардом, фибринозный перитонит, перигепатит, перикардит. Температура тела у отдельных цыплят повышалась на 0.5—1°. Скрытой крови в фекалиях не обнаружено. Среднесуточные привесы за период опыта в I группе составили 6,7 г, во II — 6,0: в III — 7,3, в IV — 10,8 г.

Динамика гематологических показателей отражена в таблице. Ее анализ показывает, что уже на 3-5-й день после заражения у цыплят наблюдалась резко выраженная эритропения — соответственно на 64,9 и $46.8^{\circ}/_{\circ}$ меньше, чем в IV группе (P<0.05, P<0.001). К концу опыта содержание эритроцитов было на 8,8% ниже (Р<0,02), чем у птицы IV группы. Имел место резко выраженный лейкоцитоз, особенно на 15— 20-й день после заражения, главным образом за счет эозинофилов, моноцитов и лимфоцитов.

Псевдоэозинофильная реакция была выражена незначительно. Необходимо отметить, что лейкоцитарная реакция у цыплят II группы появлялась позже, чем у молодняка I и III групп. Наблюдалась также гипогемоглобинемия и тромбоцитоз. РОЭ была несколько замедленной, в то время как у цыплят I и III групп она была ускоренной.

Полученные результаты дают основание сделать вывод, что симптомокомплекс смешанного кокцидиоза и колибактериоза у цыплят отличается от симптомокомплекса, наблюдаемого при самостоятельном течении этих болезней. Характер этих изменений свидетельствует аллергическом состоянии организма, возникшем в результате сенсибилизации его кокцидиями и E. coli.

ЛИТЕРАТУРА

- Качала И. И. «Ветеринария», 1975, № 8.
 Куличкин П. Н. Пуллороз и кокцидиоз цыплят. Горький, 1966.
 Ларин С. А. Вестн. с.-х. науки Казахстана. 1973.
 Манагаров Д. П. Смешанная форма паратифа и инвазии кокцидий у нутрий.— В сб.: НТИ ВНИИ животного сырья и пушнины. Вып. 1 (4), 1960. 5. Мешков С., Чилев Д. Вет. сб. Т. 70, кн. 4, 1973. 6. Орехова М. М. Кокцидиоз — опасное заболевание цыплят. Мы., «Урожай», 1966.

 - 7. Решетняк В. В., Пахомова Н. Г. Тр. Новочеркасского зоовет. ин-та. Вып. 14, 1962.
 - 8. Савов Д. Изв. на Ветер. ин т по заразни и паразитни болести. 9, 1963.

Гематологические показатели у цыплят, зараженных кокцидиями и $E.\ Coli\ (M\pm m)$

Группа	1		Время исследования после заражения, дни										
1 pynna	До заражен	я	а	5	10		15		20	1	30		40
Эритроциты, млн.													
I II III IV	$\begin{array}{c} 2,49 \pm 0,18 \\ 2,48 \pm 0,09 \\ 2,48 \pm 0,10 \\ 2,47 \pm 0,08 \end{array}$	2 0,8	5+0,10 9+0,09 9+0,06 3+0,11	1,87+0,05 1,32+0,03 1,94+0,01 2,88+0,19	2,20+0,04 2,00+0,03 2,32+0,001 2,85+0,05		2,29±0,11 2,28±0,09 2,47±0,02 2,78±0,001		2,37+0,02 2,30+0,11 2,54+0,01 2,81+0,09		2,46+0,02 2,48+0,21 2,70+0,23 3,01+0,07		2,68±0,01 2,69±0,18 2,70±0,17 3,03±0,10
Лейкоциты, тыс.													
I II III IV	$\begin{bmatrix} 30,80 \pm 0,44 \\ 30,83 \pm 0,36 \\ 30,70 \pm 0,07 \\ 25,7 \pm 0,25 \end{bmatrix}$	29,9	40+0,10 90+0,35 31+0,20 25+0,24	40,30±0,36 49,81±0,38 44,86±0,10 30,27±0,19	47,42±0,08 54,92±0,60 48,0±0,40 32,83±0,44		47,53+0,63 59,40-0,49 39,80-0,34 35,10-0,17		39,40+0,32 48,52+0,72 34,30+0,19 33,43+0,81		35,74+0,32 38,10+0,39 31,0+0,50 33,30+0,64		34,72+0,22 31,90±0,46 30,22±0,45 34,42±0,55
Гемоглобин, г %													
I II III IV	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 8	,9±0,06 ,1±0,06 ,5±0,04 ,9±0,05	7,9+0,04 7,5+0,04 7,9+0,04 11,6+0,09	8,1+0,05 5,9+0,08 7,7-0,04 12,2-0,05		82 ± 0.04 6.4 ± 0.2 10.7 ± 0.09 12.4 ± 0.01		$8,4\pm0,06$ $6,4\pm0,08$ $11,0\pm0,30$ $12,2\pm0,18$		$\substack{9,2+0,11\\8,2+0,08\\12,0+0,07\\12,3+0,10}$		11,0+0,12 9,4+0,20 12,0+0,04 12,1±0,07
Лейкоформула, базофилы, %													
I II III IV	$ \begin{vmatrix} 2,2+0,10 \\ 2,3+0,16 \\ 2,2+0,06 \\ 2,4+0,17 \end{vmatrix} $	1,2 2,3	5+0,08 2+0,12 3+0,10 2+0,03	4,6+0,01 2,5+0,12 2,2+0,60 2,2+0,01	$\begin{array}{c} 2,2 \pm 0,04 \\ 2,6 \pm 0,09 \\ 2,3 \pm 0,12 \\ 2,5 \pm 0,21 \end{array}$		2,6±0,09 2,7=0,18 2,3=0,05 2,9=0,25		3,2+0,05 2,5+0,20 2,7+0,32 2,5+0,03		2,6+0,13 $2,6+0,21$ $2,5+0,06$ $2,3+0,19$		2,5+0,01 $2,8+0,08$ $2,5+0,20$ $2,2+0,01$
Эозинофилы, %													
I II III IV	$\begin{array}{c} 3,1+0,19 \\ 3,4+0,07 \\ 3,4+0,13 \\ 3,9+0,06 \end{array}$	1,0	$\begin{bmatrix} 2+0,22\\ 0+0,18\\ 3+0,90\\ 1\pm0,20 \end{bmatrix}$	4,4±0,20 9,6±0,03 3,7±0,20 1,7±0,43	$\begin{bmatrix} 2,2+0,33\\ 15,5+0,12\\ 3,8+0,14\\ 2,0+0,08 \end{bmatrix}$		2,8±0,04 14,5±0,09 5,8±0,01 2,1±0,20		2,4+0,03 10,5+0,11 5,0+0,08 2,4+0,09		4,2+0,20 9,5+0,09 5,0+0,10 4,0+0,10		6,3+1,60 $8,6+0,08$ $4,7+0,04$ $6,0+0,12$

Псевдоэозинофилы, %

I II III IV	22,2+0,82 21,5+1,3 22,1+0,9 22,0+2,1	$ \begin{vmatrix} 32.7 + 1.27 \\ 37.0 + 0.87 \\ 22.5 + 0.93 \\ 22.5 + 0.86 \end{vmatrix} \begin{vmatrix} 42.0 + 1.20 \\ 28.2 + 1.4 \\ 17.1 + 0.81 \\ 21.8 + 0.80 \end{vmatrix} $	$ \begin{vmatrix} 48,0+0,23 \\ 24,4+0,99 \\ 10,3+1,30 \\ 23,7+0,68 \end{vmatrix} \begin{vmatrix} 42,2+0,92 \\ 22,4+1,11 \\ 16,0+0,86 \\ 24,8+1,30 \end{vmatrix} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
Лимфоциты, %										
I II III IV		$ \begin{vmatrix} 58,0+0,94 \\ 56,0+1,02 \\ 67,9+1,10 \\ 70,5+1,14 \end{vmatrix} \begin{vmatrix} 46,8+1,36 \\ 48,2-1,11 \\ 75,0+0,87 \\ 70,5+0,99 \end{vmatrix} $	$ \begin{vmatrix} 44,3\pm 1,12 \\ 43,5\pm 1,08 \\ 80,4\pm 0,64 \\ 68,5\pm 0,08 \end{vmatrix} \begin{vmatrix} 49,2\pm 0,52 \\ 46,3\pm 0,09 \\ 72,4\pm 0,10 \\ 67,0\pm 1,10 \end{vmatrix} $	$ \begin{vmatrix} 60,5\pm0,61\\44,3\pm1,07\\67,3\pm0,77\\66,2\pm0,93 \end{vmatrix} \begin{vmatrix} 63,0\pm0,84\\58,6\pm0,10\\66,2\pm0,12\\65,4\pm0,59\\65,3\pm0,87 \end{vmatrix} \begin{vmatrix} 64,0\pm0,44\\64,0\pm1,13\\65,4\pm0,59\\62,0\pm0,86 \end{vmatrix} $						
Моноциты, %										
I II III IV	$\begin{array}{r} 3,0+0,07 \\ 3,3+0,19 \\ 3,3+0,22 \\ 4,2+0,04 \end{array}$	$ \begin{bmatrix} 4,5 \pm 0,08 \\ 4,8 \pm 0,41 \\ 3,8 \pm 0,04 \\ 2,7 \pm 0,22 \end{bmatrix} \begin{bmatrix} 2,8 \pm 0,23 \\ 11,5 \pm 0,16 \\ 2,0 \pm 0,01 \\ 3,8 \pm 0,19 \end{bmatrix} $	$ \begin{vmatrix} 3,3\pm1,20 \\ 14,0\pm0,93 \\ 3,2\pm0,01 \\ 3,30\pm0,08 \end{vmatrix} \begin{vmatrix} 3,2\pm0,28 \\ 14,1\pm0,16 \\ 3,5\pm0,05 \\ 3,2\pm0,11 \end{vmatrix} $	$ \begin{vmatrix} 4,2\pm0,40 \\ 12,2\pm0,19 \\ 4,5\pm0,33 \\ 3,5\pm1,02 \end{vmatrix} \begin{vmatrix} 4,2\pm0,66 \\ 4,8\pm0,59 \\ 3,8\pm0,78 \\ 4,4\pm0,89 \end{vmatrix} \begin{vmatrix} 4,2\pm0,07 \\ 3,7\pm0,89 \\ 4,4\pm0,93 \\ 5,3\pm0,69 \end{vmatrix} $						

9. Хетагуров А. К. Цитировано по В. М. Апатенко (1974). Автореф. докт. дис. Харьков, 1969. 10. Чеботарев Р. С. Тр. БелНИВИ. Т. 1, 1960.

> В. Ф. ЛИТВИНОВ, Березинский государственный заповедник; Н. Ф. КАРАСЕВ, Витебский ордена «Знак Почета» ветеринарный институт им. Октябрьской революции

НЕКОТОРЫЕ ВОПРОСЫ ЭПИЗООТОЛОГИИ ПАРАФАСЦИОЛОПСОЗА ЛОСЕЙ БЕРЕЗИНСКОГО ЗАПОВЕДНИКА

Парафасциолопсоз лосей — паразитарное заболевание, вызываемое трематодой Parafasciolopsis fasciolaemorpha, Eismont, 1932. Этот паразит поражает печень лосей, оленей, косуль [2, 3, 6, 7, 8] и причиняет охотничьему хозяйству значительный ущерб в связи с нарушением пищеварения и снижением их мясной продуктивности [1, 3, 4, 5]. Чтобы правильно организовать мероприятия по снижению заболеваемости ценных охотничье-промысловых животных этим трематодозом, необходимо знать особенности распространения заболевания в каждой климатической зоне, однако краевая эпизоотология парафасциолопсоза еще не изучена.

Нами в Березинском государственном заповеднике в течение ряда лет (1961—1974) изучались некоторые вопросы эпизоотологии парафасциолопсоза лосей. Методами полных и частичных гельминтологических вскрытий обследовано 362 лося различного возраста и пола. Одновременно анализировали данные Крайцевской метеостанции Березинского заповедника о количестве осадков и температуре воздуха.

У 193 обследованных животных (51,9°/0) были обнаружены парафасциолопсисы при интенсивности инвазии от 45 до 27 500 экз. При длительном паразитировании трематод в печени стенки желчных ходов утолщаются, происходит их обызвествление и паразиты гибнут. Таким образом, иногда при вскрытии печени паразиты не обнаруживаются, хотя патологоанатомические изменения в печени, характерные для парафасциолопсоза, ясно выражены. Такое явление отмечается у старых особей. Учет патологоанатомических изменений показал, что экстенсивность инвазии лосей парафасциолопсисами в отдельные годы достигала 80°/₀.

Наиболее часто парафасциолопсоз регистрировался у старых лосей. Так, по группе животных старше шести лет инвазия доходила до $80^{\circ}/_{0}$ и более, в то время как молодняк до двух лет инвазирован на 42.8%. Экстенсивность инвазии у самцов выше, чем у самок. По учтенным особям она составила соответственно 63.4 и $48.3^{\circ}/_{0}$.

Распространение парафасциолопсоза лосей в различных лесничествах заповедника колеблется от 46,9 до $61,2^{\circ}/_{0}$. Наибольшая экстенсивность инвазии отмечена в Терешкинском, Березинском, Домжерицком и Паликском лесничествах — соответственно $61,2;\,55,5;\,54,5;\,55,5^{\circ}/_{0}$. В этих лесничествах большое количество болот, лесных речек и ручьев. В лесничествах с меньшим количеством болот и других водоемов (Рожнянское, Крайцевское, Маковьевское) зараженность лосей ниже — соответственно $47,5;\,48,8$ и $46,9^{\circ}/_{0}$.

Многие исследователи сообщали, что экстенсивность и интенсивность инвазии лосей парафасциолопсисами находятся в обратной связи с количеством осадков, выпадающих в зоне в летний период [6, 8 и др.]. Анализ данных метеостанции показал, что четкой зависимости между количеством осадков, экстенсивностью и интенсивностью парафасциолопсозной инвазии лосей нет. Это, видимо, объясняется тем, что наличие боль-