Н. Н. АНДРОСИК

Белорусский научно-исследовательский институт экспериментальной ветеринарии им. С. Н. Вышелесского

Л. П. ВЕЛЬ

Витебский ордена «Знак Почета» ветеринарный институт им. Октябрьской революции

НЕКОТОРЫЕ ВОПРОСЫ ПАТОГЕНЕЗА МИКОПЛАЗМОЗНОЙ ПНЕВМОНИИ СВИНЕЙ

Для разработки специфических средств профилактики и обоснованных мер борьбы с энзоотической пневмонией свиней необходимо изучить патогенез этой болезни.

Согласно данным Р. В. Душука [1], у экспериментально инфицированных нативным материалом поросят уже на 4-й день после заражения в слизистой оболочке носа, трахеи и бронхов наблюдается набухание и десквамация эпителия, накопление серозно-слизистого экссудата, выход нейтрофилов и клеточная инфильтрация собственного слоя слизистой оболочки. В легких образуются мелкие диффузно разбросанные очаги уплотнения альвеолярных стенок за счет инфильтрации полиморфными клетками, а в просветах альвеол увеличивается количество десквамированных альвеолярных клеток, нейтрофилов и серозного экссудата.

В то же время сообщается о том, что утолщение межальвеолярных перегородок, умеренное количество мононуклеарных и других клеток в альвеолах, катаральный или катарально-гнойный бронхит являются неспецифическими для энзоотической пневмонии, но считаются характерными реакциями на инфекционные агенты [5].

Противоречивы также данные о первичной локализации и распространении возбудителя в дыхательных путях. Не выяснено, и какие защитные механизмы организма способствуют инактивации и разрушению возбудителя.

Для изучения некоторых вопросов патогенеза нами проведен опыт на 17 поросятах-сосунах. Животных I группы (9) инфицировали бульонной культурой микоплазм (штамм Т-5) и убивали на 5-й, 10-й, 15-й, 30-й, 40-й и 50-й дни после заражения. В эти же сроки убивали контрольных поросят. Изучали патологоанатомические изменения, отбирали пробы органов (головной мозг, трахея, легкие, печень, сердце, селезенка, почки, бронхиальные и брыжеечные лимфоузлы) для гистологических, микробиологических исследований, делали мазки-отпечатки, а гистологические срезы — для иммунофлуоресцентной микроскопии.

Материал для гистологического исследования фиксировали в 10%ном нейтральном растворе формалина, готовили замороженные срезы и окрашивали по общепринятым методикам.

Для иммунолюминесцентной микроскопии глобулиновую фракцию высаливали из иммунной микоплазмозной сыворотки насыщенным раствором сернокислого аммония и метили флуоресцеинизотиоционатом натрия по методикам, описанным Хайбл и Зальцман [3]. Меченый глобулин давал яркое типичное свечение с гомологичными штаммами микоплазм в титре 1:4 и не вызывал свечения гетерологических культур. Мазки-отпечатки исследовали прямым методом иммунофлуоресцирующих антител.

Микроскопические изменения в легких выявлены только у трех экспериментально инфицированных поросят, убитых на 15-й и 30-й дни

после заражения. Воспаленные участки легких были небольшие, бледно-красные, сравнительно плотной консистенции.

На 5-й день после инфицирования в трахее отмечено незначительное набухание слизистой оболочки и увеличение в объеме слизистых желез. Подслизистый слой был несколько разрыхлен, встречались единичные лимфоциты и гистиоциты.

В воспаленных очагах легких отмечалось набухание и слущивание клеток эпителия бронхов. Альвеолы содержали экссудат, который состоял из слущенных клеток эпителия, гистиоцитов, реже лимфоцитов и эозинофилов. В печени еще выявлялись очаги эритробластического кроветворения. В дольках балочное строение было сглажено, гепатоциты набухшие, в цитоплазме заметна зернистость.

На 10—15-й дни после инфицирования в большей мере было выражено набухание и слущивание эпителия трахеи и бронхов. Встречалось много бокаловидных клеток. Слизистые железы были увеличены, заполнены слизью. В просветах бронхов и альвеол находили серозный экссудат, содержавший незначительное количество клеточных элементов. В подслизистом слое и вокруг бронхов установлены интенсивные клеточные пролифераты. Дистрофические изменения в печени и эпителии извитых канальцев почек более выражены. Местами наблюдали слущивание эпителия межбалочных капилляров печени и увеличение ядер эпителиальных клеток извитых канальцев почек. В селезенке обнаружена пролиферация лимфоидных клеток, истончение и разрыхление трабекул. Фолликулов много, в них отмечено скопление лимфоидных клеток. Подобные изменения выявлены в бронхиальных лимфоузлах. Мышечные волокна сердца набухшие, поперечная исчерченность сглажена. В головном мозгу развивался периваскулярный отек и отмечалось набухание стенки сосудов.

К 30-му дню после заражения в слизистой трахеи появилось много бокаловидных клеток, цитоплазма которых переполнена слизью, местами они разорваны. Подслизистый слой умеренно инфильтрирован лимфоцитами и гистиоцитами. В бронхах отмечена очаговая десквамация эпителия слизистой оболочки. Бокаловидные клетки встречались редко. Слизистые железы были увеличены, расположены в виде крупных пакетов, просветы заполнены слизью. В подслизистом слое выявлены интенсивные пролифераты лимфоцитов и гистиоцитов, особенно в местах повреждения слизистой. В очагах поражения легких лимфоидная перибронхиальная ткань в состоянии интенсивной гиперплазии. Альвеолы заполнены слущенными клетками эпителия, гистиоцитами и лимфоцитами. Межальвеолярные перегородки утолщены. В селезенке и бронхиальных лимфоузлах в большей мере выражены гиперпластические процессы. Фолликулов много, они крупные, с выраженными реактивными центрами. Вокруг кисточковых артерий селезенки выявлены обширные скопления лимфоцитов. Венозные синусы сдавлены, небольшие. В тяжах между синусами интенсивные пролифераты лимфоидных клеток. Мякотные шнуры лимфатических узлов обширные, богатые лимфоцитами, незаметно переходят в синусы. На границе перехода выявлено большое количество эозинофилов и лимфоцитов. В головном мозгу отмечено разрыхление и набухание стенки сосудов, слабо выраженный периваскулярный отек.

Начиная с 40-го дня после заражения наблюдалось угасание морфологических изменений в легких. Перибронхиальные муфты небольшие. В легких отмечалась застойная гиперемия и отек. Слизистые железы встречались часто, просветы их заполнены слизью. К этому времени резко были выражены гиперпластические процессы в лимфоидных орга-

нах. Изменений в сердечной мышце не отмечено. В печени и почках дистрофические изменения сохранились.

При изучении развития микоплазмозного процесса нами также отмечено, что в печени и селезенке инфицированных поросят длительное время сохраняются очаги эритробластического кроветворения, а в воспалительных очагах легочной паренхимы, селезенке и бронхиальных лимфоузлах увеличено содержание эозинофилов.

При люминесцентной микроскопии мазков-отпечатков и гистологических препаратов микоплазмы выявлены во всех исследуемых органах на 5-й день после заражения. Они были представлены в виде ярко светящихся точек, расположенных в основном на поверхности клеток. В последующем в органах дыхания, в меньшей степени в сердце, печени и головном мозгу их концентрация увеличивалась, достигая максимума к 15—30-му дню, затем снизилась, а к 50-му дню регистрировали лишь единичные тускло светящиеся клетки. В лимфоидных органах в начале заболевания концентрация микроорганизмов была незначительной, с 15-го дня их количество увеличивалось и оставалось на одном уровне до конца срока наблюдения.

При микробиологическом исследовании микоплазмы выделяли из легких, трахеи, головного мозга, печени, селезенки поросят, убитых в первые 15 дней после заражения, на 30-й день — только из трахеи, легких и бронхиальных лимфоузлов.

Более длительное выявление микоплазм методом иммунофлуоресцентной микроскопии может свидетельствовать о высокой чувствительности данного метода. Это подтверждают исследования E. Stanbridge [6], согласно которым микоплазмы нередко окружаются цитоплазмой поврежденных клеток хозяина. В таких случаях попытки изолировать их часто оказываются безуспешными. Но не исключена возможность, что в более поздние сроки при иммунофлуоресцентной микроскопии мы выявляли антигенные детерминанты микоплазм.

У контрольных поросят гистологических изменений и специфической иммунофлуоресценции не наблюдали, а при микробиологическом исследовании микоплазмы не выделены.

Таким образом, исследования показали, что микоплазмы наиболее интенсивно размножаются в верхних дыхательных путях и вызывают воспалительные реакции. Одновременно отмечается гиперсекреция слизистых желез, что, по-видимому, препятствует фиксации микоплазм. Однако эти защитные реакции оказываются недостаточными и не могут предотвратить развитие воспалительного процесса. Под действием токсинов микоплазм замедляется движение ресничек эпителия [4], а следовательно, и удаление инфекционного начала из дыхательных путей. Микоплазмы проникают в легкие, где активно размножаются, обусловливая клинические и патологоанатомические проявления серозной, серозно-катаральной пневмонии. В результате нарушения барьерной и очистительной функции бронхов активизируют действие условно патогенные бактерии и в легких нередко развивается гнойное воспаление. Изменения в органах дыхания возникают, очевидно, не только на почве токсического действия метаболитов, микоплазм, но и вследствие непосредственного размножения их в клетках. Об этом свидетельствуют данные В. В. Неустроевой с соавт., согласно которым микоплазмы сначала располагаются внеклеточно и на поверхности клеток, затем внутриклеточно, где наблюдается их интенсивное размножение, а потом локализуются на поверхности клеток и вне их [2].

Угасание морфологических изменений в легких и преобладание гиперпластических процессов в лимфоидных органах указывают на то, что начинают преобладать защитные механизмы и наступает выздоровление. Однако трудно сказать, освобождается организм от микоплазм или нет. По всей вероятности, наступает так называемая компромиссная ситуация, которая характеризуется наличием в организме микоплазм, хотя признаки заболевания у животных отсутствуют.

Таким образом, результаты исследований позволяют сделать вывод о том, что инфекционный процесс развивается в определенной последовательности. Вначале возникают воспалительно-десквамативные и пролиферативные процессы в верхних дыхательных путях, затем в легких. В последующем иммунобиологические реакции начинают преобладать и наступает постепенное угасание воспалительного процесса в легких.

ЛИТЕРАТУРА

- 1. Душук Р. В. Энзоотическая вирусная пневмония свиней. -- М., Колос, 1970, 142 c.
- 2. Неустроева В. В., Вульфович Ю. В., Каган Г. Я. Локализация и возможный цикл развития микоплазм и L-форм бактерий в культурах клеток. -- Бюл. экспер. биологии и медицины, 1976, № 4, с. 439—440.

 3. Хэйбл К., Зальцман Р. Методы вирусологии и молекулярной биологии.— М., Мир, 1972, с. 256—257.

 4. Jericho K. W. Interpretation of the histopathological changes of porcine enzootic

pneumonia. - The veterinary Bulletin, 1977, 47, 12, c. 887-889.

5. Stanbridge E. Mycoplasmas and cell cultures. Bact. Rev., 1971, 35, c. 206-227.

УДК 615.777/779:638.152

Б. В. ЗЮМАН

Белорусский научно-исследовательский институт экспериментальной ветеринарии им. С. Н. Вышелесского

ИСПЫТАНИЕ НЕКОТОРЫХ ДЕЗИНФИЦИРУЮЩИХ СРЕДСТВ ПРИ ВИРОЗАХ ПЧЕЛ

Дезинфекция предметов ухода за пчелами при вирусных заболеваниях до настоящего времени не разработана. Сведения о действии на вирусы дезинфицирующих веществ немногочисленны и противоречивы. Так, известно, что вирус мешотчатого расплода устойчив к 3%-ному раствору едкого натра, 10%-ному раствору риваноля, 0,3—10%-ному марганцовокислого калия [1, 2] и погибает под воздействием 1%-ного раствора едкой щелочи, 0,1%-ного формальдегида и 0,02%-ного раствора перманганата калия [3]. Жиофре А. [4] установил, что вирус устойчив к среде с рН 3.

Целью нашей работы было выяснить, какие вещества наиболее приемлемы для влажной дезинфекции сотов при вирозах пчел.

В качестве дезинфицирующих веществ использовали химически чистые соляную кислоту и едкий натр в 0,5; 1 и 2%-ной концентрациях. Вирусный материал был представлен штаммом мешотчатого расплода пчел Л-77, выделенным в колхозе «Путь Ленина» Лунинецкого района в 1977 г. (титр вируса 5 $\lg \Pi \Pi_{50}$ для личинок пчел) и штамм острого паралича ABP (титр -12.2 lg $\Pi \Pi_{50}$ для пчел). Опыты проводили на экспериментальном точке, опытной пасеке и в лаборатории БелНИИЭВ им. С. Н. Вышелесского.

Кислоту или щелочь смешивали с равным объемом суспензии вируса и полученной смесью заражали сразу после смешивания двухдневных личинок или имаго пчел.

Испытуемыми растворами кислоты или щелочи обрабатывали также