ЕСТЕСТВЕННАЯ РЕЗИСТЕНТНОСТЬ ПОРОСЯТ ПРИ ИСПОЛЬЗОВАНИИ КОРМОВОЙ ПОДКИСЛЯЮЩЕЙ ДОБАВКИ

В. Ю. Маслак¹, А. Ф. Железко², В. А. Лазовский², Н. В. Януть³

¹Смиловичский государственный аграрный колледж, г. п. Смиловичи, Республика Беларусь ²Витебская ордена «Знак Почета» государственная академия ветеринарной медицины, г. Витебск, Республика Беларусь ³Научно-практический центр Национальной академии наук Беларуси по животноводству, г. Жодино, Республика Беларусь

Аннотация. Введение в рацион поросят кормовой подкисляющей добавки, содержащей в своем составе яблочную кислоту и доломит, стимулирует естественную резистентность организма, способствует увеличению продуктивности.

Ключевые слова: поросята, органические подкислители кормов, естественная резистентность, продуктивность.

Введение. Интенсивные технологии выращивания свиней предусматривают размещение животных на ограниченных площадях и однотипное кормление. При этом животные особенно требовательны к кормам и гигиене кормления. Неполноценность рационов, резкие их изменения при введении новых ингредиентов, использование кормов низкого качества, в том числе и вкусового, вызывают значительные физиологические перегрузки организма, а иногда и стрессовую ситуацию. Вышеизложенное приводит к ослаблению неспецифической резистентности, заболеваемости, а нередко и к падежу животных. Особенно чувствителен при этом молодняк. Одним из путей решения этой проблемы является повышение уровня естественной резистентности организма путем введения в рацион биологически активных веществ [1]. Для стимуляции естественных защитных сил организма поросят могут быть использованы кормовые добавки, содержащие в своем составе органические кислоты, участвующие в цикле Кребса. Результаты исследований ряда авторов свидетельствуют о том, что введение их в рационы способствует улучшению вкусовых качеств и поедаемости кормов, активизирует метаболические процессы в организме. Профилактировать минеральную недостаточность в организме поросят можно введением в рацион природных минералов. Республика обладает значительным потенциалом для использования с этой целью торфа, глины, трепела, мела и др. [2–5].

Цель работы — повышение уровня естественной резистентности организма и продуктивности поросят путем введения в рацион кормовой подкисляющей добавки.

Материалы и методы исследований. Исследования проводились в условиях свинотоварного комплекса «Шайтерово» Верхнедвинского района Витебской области Витебской области. Для повышения уровня естественных защитных сил организма поросят мы применили разработанную нами кормовую подкисляющую добавку, содержащую в своем составе яблочную кислоту и недорогое местное природное минеральное сырье - доломит нижнего уступа. При постановке на участок доращивания по принципу условных аналогов были подобраны 4 группы поросят по 20 голов в каждой. Животные первой группы были контрольными и изучаемую кормовую подкисляющую добавку не получали. В рацион поросят второй, третьей и четвертой (опытных) групп с 45- до 105-дневного возраста в смеси с комбикормом вводили изучаемую кормовую подкисляющую добавку в дозах соответственно 0,3 % к массе комбикорма (3 г на кг комбикорма), 0,5 % к массе комбикорма (5 г на кг комбикорма) и 0,7 % к массе комбикорма (7 г на кг комбикорма). Продолжительность опыта составила 60 дней. Взятие проб крови для лабораторных анализов и контрольные взвешивания поросят проводили при постановке на опыт и по окончании периода исследований. Бактерицидную активность сыворотки крови определяли по Мюнселю и Треффенсу в модификации О. В. Смирновой и Т. Н. Кузьминой; лизоцимную активность сыворотки крови – фотоэлектрокалориметрическим методом; фагоцитарную активность нейтрофилов – постановкой опсонофагоцитарной реакции по методике В. С. Гостева. Гематологические показатели – при помощи автоматического прибора MEDONIC-CA 620 (Швеция). Содержание в сыворотке крови общего белка – на автоматическом биохимическом анализаторе EuroLyser (Англия) с использованием наборов тест-реагентов фирмы Сагтау (Польша). Общее состояние животных контролировали путем клинического осмотра с термометрией. Продуктивность поросят определяли путем контрольных взвешиваний.

Результаты исследований. Установлено, что показатели гуморальных и клеточных факторов неспецифической защиты организма поросят контрольной и опытных групп при постановке на участок доращивания находились в пределах физиологических параметров и соответствовали возрастной норме. Бактерицидная активность сыворотки крови (БАСК) поросят первой (контрольной) группы регистрировалась на уровне $49,86 \pm 4,41$ %, второй опытной группы $-45,01 \pm 4,07$ %, третьей опытной группы $-47,47 \pm 1,37$ % и четвертой опытной группы $-46,33 \pm 1,08$ %. Лизоцимная активность сыворотки (ЛАСК) подопытных животных начале исследований была на уровне $2,37 \pm 0,03 - 2,79 \pm 0,08$ %. Уровень фагоцитарной активности нейтрофилов (ФАН) подопытных поросят составлял $20,0 \pm 0,26 - 23,5 \pm 0,78$ %, без достоверных различий между группами. В конце исследований показатель БАСК повысился у всех подопытных животных. При этом у поросят

третьей и четвертой групп, получавших изучаемую кормовую подкисляющую добавку в дозах 5 и 7 г соответственно на кг комбикорма, БАСК составила $65,24\pm4,89$ % и $69,51\pm5,07$ % соответственно, превышая контроль (57,38 %) на 7,9 и 12,1 % ($p\leq0,05$). Аналогичная тенденция отмечалась и по ЛАСК. У 105-дневных поросят третьей и четвертой групп по завершении периода исследований ЛАСК регистрировалась на уровне $6,46\pm0,47$ % и $7,01\pm5,35$ %, превышая контроль (5,45 %) на 1,0 и 1,6 % соответственно. У поросят второй опытной группы, получавших изучаемую добавку в дозе 3 г на кг комбикорма, достоверного превышения БАСК и ЛАСК по отношению к контрольным животным не установлено. Фагоцитарная активность нейтрофилов в конце опыта повысилась у поросят всех подопытных групп в среднем на 6,4 %, без достоверных различий между группами. Данный показатель составил у животных первой группы $27,5\pm0,98$ %, второй группы $-29,2\pm0,36$ %, третьей группы $-28,0\pm0,59$ % и четвертой группы $-28,2\pm0,69$ %.

Содержание общего белка в сыворотке крови подопытных животных в начале исследований регистрировалось в пределах от $34,25\pm0,79$ до $39,11\pm0,49$ г/л. В конце опыта значение данного показателя выросло и составило у поросят первой группы $64,05\pm0,85$ г/л, второй $-63,78\pm0,85$ г/л, третьей $-68,04\pm0,85$ г/л и четвертой $-69,09\pm0,08$ г/л. При этом животные, получавшие изучаемую добавку в дозах 5 и 7 г на кг комбикорма, превосходили по содержанию общего белка контроль на 6,2 и 7,9 % соответственно ($p \le 0,05$). Динамика изменения альбуминов в целом повторяла динамику изменения общего белка. Наиболее низкий уровень данного показателя отмечался у подопытных животных 45-дневного возраста (от $25,92\pm0,83$ г/л до $26,23\pm1,54$ г/л), а в 105-дневном возрасте он увеличилось в среднем на 26 %, однако статистически значимых различий при сравнении опытных и контрольных животных по содержанию альбуминов не установлено.

Результаты исследований крови подопытных животных показали, что содержание лейкоцитов у поросят всех подопытных групп в начале опыта находилось в физиологических пределах и регистрировалось на уровне от $14,80\pm1,141$ до $15,00\pm1,510\times10^9/\pi$. В конце опыта количество лейкоцитов снизилось до уровня от $12,92\pm0,77$ до $13,25\pm0,28\times10^9/\pi$, оставаясь в пределах физиологической нормы. Количество эритроцитов в крови животных контрольной и опытных групп в период исследований также было в пределах физиологических показателей. При постановке в опыт содержание эритроцитов в крови поросят контрольной и опытных групп было на уровне от $4,79\pm0,49$ до $5,65\pm0,31\times10^{12}/\pi$. В 105-дневном возрасте данный показатель несколько повысился до уровня от $5,19\pm0,31$ до $6,00\pm0,45\times10^{12}/\pi$, оставаясь в физиологическом диапазоне без достоверных различий между группами. Введение в рацион поросят изучаемой добавки способствовало

увеличению содержания гемоглобина. В конце опыта у 105-дневных поросят третьей и четвертой групп содержание гемоглобина составило 123,75 \pm 4,250 и 135,00 \pm 3,861 г/л соответственно, достоверно превышая контроль (119,8 \pm 3,46 г/л) на 3,3 и 12,7 % ($p \le 0,05$).

Стимуляция естественных защитных сил организма при введении в рацион изучаемой добавки способствовала снижению заболеваемости и повышению продуктивности поросят. В течении периода исследований в первой (контрольной) группе диагностировали у двух поросят гастроэнтерит и у одного – бронхопневмонию, во второй – у трех поросят гастроэнтерит, в третьей – у одного бронхопневмонию, в четвертой – у одного бронхопневмонию. Живая масса поросят контрольной и опытных групп при постановке в опыт была на уровне от $10,01 \pm 0,27$ до $10,24 \pm 0,52$ кг. 60-дневное скармливание изучаемой добавки способствовало увеличению абсолютного прироста живой массы животных третьей опытной группы на 3,8 % и четвертой – на 4,3 % ($p \le 0.05$). По среднесуточному приросту живой массы наибольшее превышение контроля – на 22,8 г – отмечали у поросят четвертой опытной группы (548,6 \pm 0,85 г против 525,8 \pm 0,99 г в контроле). В третьей опытной группе данный показатель составлял $546,0\pm0,571$ г, превышая среднесуточные приросты живой массы поросят контрольной группы на 21,0 г. У животных второй опытной группы среднесуточный прирост живой массы регистрировался на уровне контроля, составляя 523.9 ± 0.75 г.

Наиболее экономически эффективной из изучаемых доз применения кормовой подкисляющей добавки является доза 0,5 % к комбикорму (5 г/кг комбикорма). Экономическая эффективность от введения в рацион поросят в период доращивания кормовой подкисляющей добавки, содержащей в своем составе яблочную кислоту и доломит в дозе 0,5 % к комбикорму, составляет 2,4 руб. в расчете на 1 руб. затрат.

Заключение. Введение в рацион поросят с 45- до 105-дневного возраста кормовой подкисляющей добавки, содержащей в своем составе яблочную кислоту и доломит в дозе 0,5 % к комбикорму стимулирует естественную резистентность организма, повышая при этом соответственно: бактерицидную активность сыворотки крови на 7,9 %, содержание общего белка в сыворотке крови на 6,2 % и гемоглобина в крови на 3,3 %, что способствует увеличению приростов живой массы на 3,8 %.

Литература

1. Медведский, В. А. Эффективность применения пикумина при выращивании телят / В. А. Медведский, А. Ф. Железко, И. В. Щебеток // Интенсификация производства продуктов животноводства: материалы Междунар. науч.-произв. конф., Жодино, 30–31 окт. 2002 г. / Ин-т животноводства НАН Беларуси. – Минск: Белорусский дом печати, 2002. – С. 195.

- 2. Применение природного минерала для повышения резистентности и продуктивности молодняка крупного рогатого скота / В. А. Медведский, А. Ф. Железко, И. В. Щебеток [и др.] // Ученые записки учреждения образования «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины». 2006. Т. 42, № 2–2. С. 164–166.
- 3. Гигиеническое обоснование применения доломита как источника минерального питания молодняка сельскохозяйственных животных / В. А. Медведский, А. Ф. Железко, И. В. Щебеток В. Ю. Маслак // Ученые записки учреждения образования «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины». − 2009. − Т. 45, № 1–2. − С. 59–62.
- 4. Изучение возможности применения доломита в качестве минеральной добавки для телят / В. А. Медведский, А. Ф. Железко, И. В. Щебеток [и др.] // Ученые записки учреждения образования «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины». 2005. Т. 41, № 2–2. С. 59–60.
- 5. Применение природного сырья в качестве кормовой добавки для крупного рогатого скота / В. А. Медведский, А. Ф. Железко, И. В. Щебеток [и др.] // Практик. -2009. № 2. С. 51—57.

УДК 636.592.083.37:614.9

ИСПОЛЬЗОВАНИЕ СРЕДСТВА «УЛЬТРА-СОРБ» ПРИ ВЫРАЩИВАНИИ ИНДЕЙКИ

Д. В. Медведева, М. В. Горовенко, Т. В. Медведская, В. В. Гуйван, Т. Н. Ногина

Витебская ордена «Знак Почета» государственная академия ветеринарной медицины, г. Витебск, Республика Беларусь

Аннотация. Представлены данные о влиянии средства «Ультра-Сорб», используемого для санации помещений при выращивании индейки, на организм птицы. Установлено, что использование для обработки подстилки средства для санации поверхности пола «Ультра-Сорб» в изучаемых дозах 100—150 г/м² способствует улучшению морфологического, биохимического состава крови и повышению естественной резистентности организма индюшат.

Ключевые слова: молодняк индейки, средство «Ультра-Сорб», кровь, естественная резистентность.

Введение. В настоящее время в Беларуси стоит задача восстановления и дальнейшего развития деятельности племенных и репродукторных предприятий, разработки технологий и внедрения глубокой переработки мяса птицы с выпуском его в виде полуфабрикатов и готовых к употреблению продуктов. Индейководство при выращивании гибридов тяжелых и сверхтяжелых кроссов, наиболее пригодных для глубокой переработки с выходом большого количества высокоценного диетического мяса, должно занять одно из ведущих мест в балансе птичьего мяса [1, 3].