НПК, Нальчик, 27–28 апреля 2022 года. – Нальчик: ФГБОУ ВО "Кабардино-Балкарский ГАУ имени В.М. Кокова", 2022. – С. 19-22. – EDN OLRFPF.

- 3. Гатиятуллин, И. Р. Морфофункциональная характеристика миокардиодистрофии спортивных лошадей / И. Р. Гатиятуллин, Г. В. Базекин // Морфология. -2018. Т. 153, № 3. С. 73-73а. EDN XZCWFV.
- 4. Гатиятуллин, И. Р. Применение нового комплекса симптоматической и патогенетической терапии ранней стадии миокардиодистрофии у спортивных лошадей / И. Р. Гатиятуллин, Г. В. Базекин // Наука молодых инновационному развитию АПК : Материалы X Юбилейной Всеросс. НПК молодых ученых / БГАУ. Том Часть І. Уфа: БГАУ, 2017. С. 124-128. EDN YSQVYY.
- 5. Гатиятуллин, И. Р. Клиническое проявление болезней миокарда у спортивных лошадей / И. Р. Гатиятуллин, Г. В. Базекин // Наука молодых инновационному развитию АПК: материалы VIII Всеросс. НПК молодых ученых, Уфа, 08 декабря 2015 года. Том Часть 1. Уфа: башкирск, 2015. С. 85-88. EDN VLSEYL.

УДК 636.934.3:611.37

ОСОБЕННОСТИ МОРФОЛОГИЧЕСКОГО СТРОЕНИЯ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ ЕНОТОВИДНЫХ СОБАК ИЗ РАЗЛИЧНЫХ АРЕАЛОВ ОБИТАНИЯ

Ковалев К.Д., Федотов Д.Н.

(УО Витебская ордена «Знак Почета» государственная академия ветеринарной медицины, г. Витебск, Республика Беларусь)

Введение. Перед морфологией стоит задача объединения различных представлений о колоссальном разнообразии структурных проявлений жизни и установления закономерностей их статики и динамики. В то же время современная морфология внутренне весьма дифференцирована, представляет собой широкий комплекс дисциплин, направлений и подходов. Возникает важнейший вопрос о соотношении этих направлений, а вместе с тем и о внутренней структуре морфологии [1].В последние годы численность популяции енотовидных собак только увеличивается, так как животное всеядное, это приводит к активному влиянию на множество других биоценозов. Енотовидная собака отдает приоритет хищничеству, поэтому чаще всего это пагубное влияние, особенно на мелких полевых животных в летний период, и различных видов растений в зимний период. Поэтому важно понимать анатомическое строение пищеварительной системы у данного вида животного. Исследований, посвященных изучению и сравнению анатомических особенностей поджелудочной железы у енотовидных собак, обитающих на разных территориях, в том числе в зоне отчуждения (30-километровой зоны Чернобыльской АЭС), учеными не проводилось. Поэтому наши оригинальные исследования являются фундаментом для понимания анатомии поджелудочной железы у енотовидных собак, обитающих на разных территориях нашей страны.

Материал и методы исследований. Анатомические исследования выполнялись на кафедре патологической анатомии и гистологии УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины». Изъятие енотовидной собаки из природы на территории Витебской области, Припятского заповедника и ПГРЭЗ проводилось в осенний период 2024 г. Животные отлавливалась путем постановки капканов № 1-5. Вскрытие енотовидных собак, изъятых из дикой природы ПГРЭЗ и Припятского заповедника проводили в фауны государственного природоохранного условиях отдела экологии И исследовательского учреждения «Полесский государственный радиационно-экологический заповедник». Вскрытие животных, изъятых на территории Витебской области проводили в прозектории при кафедре патологической анатомии и гистологии Витебской ордена «Знак Почета» государственной академии ветеринарной медицины. Материал для исследования

отбирался от 23 енотовидных собак возрастом 3-4 года, из них по 8 из Припятского заповедника и Витебской области, и 7 особей из Полесского радиационно-экологического заповедника.

Описывалась топография поджелудочной железы, а также цвет, консистенция, поверхность и ее форма. Терминология приводилась в соответствии с Международной анатомической ветеринарной номенклатурой. Для установления закономерностей роста и формообразовательных процессов органогенеза изучали абсолютную массу поджелудочных желез и их длину. Линейные размеры измеряли с помощью штангенциркуля «ШЦЦ ЕРМАК» с цифровым отсчетным устройством (значение отсчета по нониусу – 0,01 мм, класс точности – 1). Абсолютную массу желез измеряли на электронных портативных весах Scout Pro модели SP402, производства фирмы OHAUS с дискретностью 0,01 г. Все цифровые данные, полученные при проведении морфологических исследований, были обработаны с помощью компьютерного программного профессионального статистического пакета «IBM SPSS Statistics 21».

Результаты исследований и их обсуждение. Поджелудочная железа является разветвленной альвеолярно-трубчатой железой смешанной секреции (внешнюю секрецию обеспечивает экзокринная часть, а внутреннюю – эндокринная). Экзокринная часть синтезирует пищеварительный сок, а внутренняя часть выделяет гормоны (инсулин, глюкагон). Общая соединительнотканная оболочка поджелудочной железы покрыта висцеральным листом брюшины и вытянута вдоль начального участка двенадцатиперстной кишки и малой кривизны желудка. Иннервация поджелудочной железы осуществляется ветвями n.vagus (X пара черепных нервов) и симпатическим сплетением, образованным постганглионарными волокнами от полулунного ганглия симпатической части вегетативной нервной системы. Артериальное кровоснабжение поджелудочной железы осуществляется по артериальным ветвям, отходящим от артерии селезенки, краниальной и каудальной панкреатико-дуоденальных артерий. Отток венозной крови осуществляется по панкреатико-дуоденальным венам, которые впадают в систему воротной вены печени. В результате проведенных анатомических исследований установлено, что поджелудочная железа енотовидных собак П-образной формы и состоит из тела, правой и левой долей. Размеры долей поджелудочной железы варьируются в зависимости от ареала обитания, данные указаны в таблице №1.

Таблица №1. Размеры поджелудочной железы енотовидной собаки в зависимости от ареала обитания.

Показатели	Ареал обитания		
	Припятский заповедник	Зона отчуждения	Витебская область
Абсолютная длина тела, см	3,88±0,99	4,44±1,45	4,86±0,53
Абсолютная длина левой доли, см	18,95±0,9	19,02±2,61	19,19±1,62
Абсолютная длина правой доли, см	12,22±1,35	12,62±1,51	13,01±0,89

Тело поджелудочной железы треугольной формы, оно располагается в краниальном изгибе двенадцатиперстной кишки, плотно прилегая к ее стенке, соединяет правую и левую доли. Длина тела железы у енотовидной собаки, обитающей на территории Припятского заповедника 3.88 ± 0.99 см, у особей, обитающих на территории Витебской области этот показатель выше на 25.25% и составляет 4.86 ± 0.53 см, в то время как у енотовидных собак, изъятых из зоны отчуждения наблюдается усредненный показатель — 4.44 ± 1.45 см, что на 12.62% больше чем у припятских особей и на 9.45% меньше чем у собак Витебской области.

Левая доля поджелудочной железы прямоугольной формы, расположена между листками сальника и доходит до селезенки и левой почки. Длина левой доли у енотовидных собак, обитающих на территории высокого радиоактивного загрязнения составляет $-19,02\pm2,61$ см, у группы животных, обитающих на территории Припятского заповедника данный показатель, незначительно уменьшается на 0,37% до $18,95\pm0,9$ см. У енотовидных собак Витебской области также наблюдается незначительное колебание данного показателя до $19,19\pm1,62$ см, рост по отношению к животным зоны отчуждения составил 0,89%. По отношению к другим органам левая доля вентрально прилегает к верхней части двенадцатиперстной кишки и к малой кривизне желудка, после изгибается и направляется к левой почке, где и заканчивается

булавовидно на ее медиальном крае, а в месте изгиба дорсально располагается воротная вена печени.

Правая доля поджелудочной железы располагается в брыжейке двенадцатиперстной кишки, параллельно нисходящему положению кишки на расстоянии от 2 до 5 см. Каудально она простирается до правой почки. Максимальная длина правой доли у енотовидных собак наблюдается у особей Витебской области и составляет 13,02±0,89 см, что на 3,08% больше чем у собак зоны отчуждения (12,62±1,51 см), и на 6,15% больше чем у собак, обитающих на территории Припятского заповедника (12,22±1,35 см). По отношению к другим органам правая доля железы прилежит к петлям тощей кишки, восходящей части ободочной кишки и к слепой кишке, дорсально от доли располагается правая почка. Правая доля поджелудочной железы имеет лентовидную форму, заканчивается булавовидно или треугольно.

Весовые показатели поджелудочной железы так же, как и линейные, меняются в процессе постнатального онтогенеза енотовидной собаки. Данные по весовым показателям роста указаны в таблице 2.

Таблица №2. Масса поджелудочной железы енотовидной собаки в зависимости от ареала обитания.

. Показатели	Ареал обитания			
	Припятский заповедник	Зона отчуждения	Витебская область	
Абсолютная масса железы, г	13,17±2,68	13,41±4,74	13,66±2,71	
Абсолютная масса тела, г	2,11±0,22	2,16±0,58	2,19±0,35	
Абсолютная масса левой доли, г	7,95±0,89	8,06±3,32	8,25±1,08	
Абсолютная масса правой доли, г	3,11±0,2	3,19±1,8	3,22±0,78	

Исходя из полученных морфометрических данных установлено, что абсолютная масса поджелудочной железы енотовидной собаки незначительно варьируется в зависимости от ареала обитания. Абсолютная масса железы у особей, обитающих на территории снятия антропогенной нагрузки составляет $13,41\pm4,74$ г, что на 1,79% больше чем у собак Припятского заповедника и на 1,86% меньше чем у животных Витебской области. Абсолютная масса железы составляет $13,17\pm2,68$ и $13,66\pm2,71$ г соответственно у собак Припятского заповедника и у особей, обитающих в Витебской области. Показатели абсолютной массы тела поджелудочной железы у енотовидной собаки во всех исследуемых ареалах также претерпевают небольшое изменение. У енотовидных собак, обитающих на территории Припятского заповедника этот показатель составляет $2,11\pm0,22$ г, у особей, обитающих на территории белорусского сектора зоны отчуждения $2,16\pm0,58$ г и $2,19\pm0,35$ г у животных Витебской области Суммарный рост показателя составил 3,79%. Абсолютная масса левой доли поджелудочной железы енотовидной собаки обитающей в зоне отчуждения равна $8,06\pm3,32$ г, что на 2,31% меньше (p<0,001), чем у особей Витебской области ($8,25\pm1,08$ г) и на 1,37% больше чем у собак Припятского заповедника $(7,95\pm0,89$ г).

Показатели абсолютной массы правой доли поджелудочной железы во всех возрастных группах только увеличиваются. У енотовидных собак Витебской области данный показатель равен 3,22±0,78 г, что на 0,94% и 3,42% больше чем у особей, обитающих на территории зоны отчуждения и животных Припятского заповедника, у вышеуказанных енотовидных собак масса правой доли поджелудочной железы составила 3,19±1,8 и 3,11±0,2 г соответственно. Установлено наличие анатомических трансформаций (формообразования) поджелудочной железы у енотовидных собак в отличие от нормы (ранее нами установленной) во всех исследуемых ареалах обитания. У енотовидных собак, обитающих на территории высокого радиоактивного загрязнения в среднем в 40% случаев наблюдается неизмененная форма железы — П-образная, треугольное тело, лентовидная, равномерно утонченная правая доля, которая

заканчивается булавовидным или треугольным расширением и более широкая (по отношению к правой доле) левая доля, которая заканчивается умеренным булавовидным уплотнением. В остальных 60% случаев общая форма железы остается неизменной, но анатомический вид долей и тела железы принимают причудливый и нехарактерный вид для данного вида животных — резкое утолщение правой доли железы и булавовидные расширения с паренхиматозным перешейком на протяжении всей левой доли железы. У животных, обитающих на территории Припятского заповедника наличие анатомических трансформаций наблюдается у 30% исследуемых животных. У особей енотовидных собак, отловленных на территории Витебской области лишь в 20% случаях, наблюдались четкие анатомические изменения поджелудочной железы. Во всех исследуемых ареалах обитания у енотовидных собак поджелудочная железа серо-красноватого цвета и упругой консистенции.

Выводы. Таким образом установлено, что наличие незначительных колебаний линейных показателей поджелудочной железы енотовидной собаки несет индивидуальный характер в каждой популяции, не взирая на это установлена разность размеров и массы долей и железы в целом в зависимости от ареала обитания енотовидных собак. Также впервые установлено наличие анатомических трансформаций поджелудочной железы в зависимости от ареала обитания, которые прежде считались отклонением от нормы, но благодаря полученным данным установлено, что они наблюдаются у особей на всех исследуемых территориях обитания, что несет больше популяционный характер.

Список литературы

1. Паавер, К. Л. Проблемы развития теоритической морфологии / К. Л. Паавер // Проблемы развития морфологии животных. – Москва, 1982. – С. 33-40.

УДК 619:616.12:636.8

ДИФФЕРЕНЦИАЛЬНО – ДИАГНОСТИЧЕСКИЕ КЛИНИЧЕСКИЕ КРИТЕРИИ ПЕРИКАРДИАЛЬНЫХ ВЫПОТОВ У СОБАК С ПАТОЛОГИЯМИ ПЕРИКАРДА.

Кокуленко К.В.¹, Илларионова В.К.², Костылев В.А.³

(1,2 Ветеринарная клиника «Биоконтроль», Москва, Россия 2,3 Московская государственная академия ветеринарной медицины и биотехнологии — МВА имени К.И. Скрябина, ул. Академика Скрябина, 23, Москва, Россия) magnet.ru@mail.ru

Введение. Совершенствование диагностики заболеваний сердца у животных остается приоритетной задачей в ветеринарии. Гидроперикард вызывает компрессию камер сердца, что провоцирует снижение наполнения и опорожнения сердца, системный венозный застой и, как следствие, может вызвать кардиогенный шок [1,2].

Материалы методы. Методами диагностики гидроперикарда являются эхокардиография, электрокардиография, рентгенография, компьютерная томография и другие. Каждый из методов имеет свои преимущества и недостатки, но однозначным лидером среди них эхокардиография [1,2].Данный метод диагностики информативностью, так как позволяет установить размеры и оценить функции сердца, выявить наличие перикардиального выпота, тромбов и опухолей сердца. Кроме того, он неинвазивен и не требует седации животного [2,3].

Результаты исследования. Ведущими клиническими признакам тампонады сердца у собак были увеличение объема живота на фоне асцита, гидроторакс, резкая слабость, обмороки, гипотензия, одышка и прогрессирующее снижение переносимости физической нагрузки [6].

У всех исследуемых собак при эхокардиографическом исследовании визуализировался выпот в перикарде в виде анэхогенного ободка вокруг сердца.

В зависимости от количества жидкости эхокардиографическая картина может представлять собой гипоэхогенный ободок вокруг сердца при небольшом объеме выпота или