УДК 619:616.98:578.823:615.37:636.5

ВЛИЯНИЕ ИММУНОСТИМУЛЯТОРОВ НА МОРФОЛОГИЧЕСКИЕ РЕАКЦИИ В ОРГАНАХ ИММУННОЙ СИСТЕМЫ ПТИЦ ПРИ ВАКЦИНАЦИИ ИХ ПРОТИВ БОЛЕЗНИ ГАМБОРО

Большаков С.А., Прудников В.С., Большакова Е.И.

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины» г. Витебск, Республика Беларусь

Приведены данные по изучению иммуноморфологических изменений в органах иммунной системы цыплят, вакцинированных жидкой эмбриональной вирус-вакциной против ИББ и влиянию на них иммуностимуляторов.

Data on studying immunomorphological changes in organs of immune system of chickens vaccinated against Humboro disease and influence on them immunostimulators are cited.

Введение. Наиболее интенсивной и динамичной отраслью аграрного комплекса Республики Беларусь является промышленное птицеводство, которое обеспечивает рынки республики диетическими продуктами питания. Большая роль для обеспечения роста производства продукции в отрасли отводится ветеринарнопрофилактическим мероприятиям. В этой связи, важнейшей задачей науки и практики становится совершенствование специфической профилактики заболеваний птицы, невозможной без качественных и недорогих вакцин [1]. В комплексе мероприятий по профилактике и ликвидации болезни Гамборо основное место уделяется проведению специфической профилактики, которая предусматривает применение инактивированных и живых вирус-вакцин [1,2]. Установлено, что вакцинные штаммы вируса способны вызывать в органах иммунной системы птиц изменения, присущие самой болезни, обуславливая развитие иммунодефицитного состояния [3]. Кроме того, при иммунизации молодняка кур, часто наблюдается значительная вариабельность титров пассивных антител в стаде птицы, что создает условия для заболевания болезнью Гамборо цыплят со слабым уровнем трансовариального иммунитета. Поэтому применение иммунокоррегирующих препаратов при вакцинации птицы для усиления иммуногенности и снижения реактогенности вакцин имеет важное научнопрактическое значение [4,5,6,7].

Морфологическое исследование органов иммунной системы в различные сроки вакцинации отражают состояние иммунного статуса птицы, что дает основание для применения иммунокоррегирующих препаратов при различных вакцинациях.

Материал и методы исследований. Опыты были проведены на 60 цыплятах 9-41-дневного возраста, подобранных по принципу аналогов, разделенных на 4 группы по 15 птиц в каждой. Цыплят 1-ой группы иммунизировали вакциной с нуклевитом, птиц 2-ой группы — вакциной с альвеозаном, цыплят 3-й группы — одной вакциной согласно Наставлению, двукратно, перорально, в 10 и 20-дневном возрасте. Контролем служили интактные цыплята 4-ой группы.

На 7-й день после 1-й, 7-й и 14-й дни после 2-й вакцинации по 5 цыплят из каждой группы убивали путем декапитации для проведения иммуноморфологических исследований органов иммунной системы. От убитых птиц отбирали кусочки тимуса, бурсы Фабрициуса, селезенки, дивертикула Меккеля, пищеводной и слепокишечных миндалин. Сразу после убоя цыплят определяли абсолютную массу лимфоидных органов. Материал, предназначенный для иммуноморфологических, иммунохимических и гистохимических исследований фиксировали в жидкости Карнуа (на РНК), 10%-ном растворе формалина. Зафиксированный материал подвергали уплотнению путем заливки в парафин по общепринятой методике [8]. Гистологические срезы готовили на санном и электронном микротоме «Olympus».

Для изучения общих структурных изменений срезы окрашивали гематоксилин-эозином, а для дифференциации плазматических клеток – метиловым зелёным и пиронином по Браше в модификации М.С. Жакова и И.М. Карпутя. Для объективной оценки характера изменений в органах иммунной системы птиц определяли содержание плазмобластов, незрелых и зрелых плазмоцитов, Т-лимфоцитов, наличие микро- и макрофагальной реакции, подсчитывали число и размеры лимфоидных узелков. Подсчёт клеточных элементов проводили в 50 полях зрения микроскопа (объектив X 90, окуляр X 10, бинокуляр X 1,5). Абсолютные размеры коркового и мозгового вещества долек тимуса, лимфоидных узелков бурсы Фабрициуса и селезенки определяли с помощью светового микроскопа Olympus BX-41 и программы «Cell-A» (объектив - 10, окуляр х 10, бинокуляр х 1,5). Вычисляли соотношение размеров паренхимы и стромы органов. Количество лимфоцитов, приходящихся на условную единицу площади в мозговой и в корковой зонах тимуса и бурсы Фабрициуса, подсчитывали при помощи объектива — 40, окуляра — 10.

Результаты исследований показали, что в тимусе на 7-й день после первой вакцинации у иммунных цыплят всех групп (1-я, 2-я и 3-я) ширина коркового вещества была выше в 1,3-1,7 раза (Р>0,05) и соотношение размеров коркового и мозгового вещества долек тимуса были больше, чем у интактной птицы на 40-50% и в 2,1 раза (Р<0,05), соответственно. Отличие в размерах мозгового вещества тимуса у молодняка всех групп было незначительным. Однако, под действием нуклевита, у вакцинированных цыплят 1-й группы, размеры мозгового вещества достигали 255,97±87,18 мкм, что было в 2 раза достоверно выше, чем у иммунизированных одной вакциной (Р<0,05).

У птицы, вакцинированной с нуклевитом, плотность лимфоцитов в корковом веществе была больше на 6,42%, по сравнению с молодняком, иммунизированным одной вакциной, и на 4,59%, чем у бройлеров, вакцинированных с альвеозаном и в 1,2 раза выше по сравнению с интактной птицей. Плотность расположения Т-лимфоцитов в мозговом веществе тимуса незначительно отличалась между цыплятами разных групп. В тимусе 23-дневных иммунных цыплят-бройлеров на 7-й день после 2-й вакцинации под действием иммуностимуляторов с возрастом расширялись размеры коркового вещества. При этом у молодняка, вакцинированного с нуклевитом, показатель этот был достоверно больше на 30% по сравнению с бройлерами, иммунизированными с

альвеозаном и соответственно выше в 1,7-2,8 раза — чем у цыплят, вакцинированных без применения иммуностимуляторов и контролем. Одновременно у иммунных цыплят 1-й и 2-й групп происходило незначительное сужение размеров мозгового вещества по сравнению с предыдущим сроком исследования. Однако показатель этот был достоверно выше в 2-2,3 раза по сравнению с бройлерами, иммунизированными одной вакциной и 2,1-2,4 раза — чем у интактной птицы. Изменение площади корковой зоны сопровождалось незначительным снижением плотности расположения в ней тимоцитов у вакцинированных и интактных цыплят, а у бройлеров 1-й и 2-й группы этот показатель существенно не изменялся по сравнению с предыдущим сроком исследования, что говорит об активной пролиферативной способности тимоцитов у птицы этих групп. Кроме того, у иммунных цыплят всех трех групп, с возрастом, повышалась плотность содержания тимоцитов в мозговой зоне тимуса, и уровень их был достоверно выше в 1,3-1,4 раза — чем у интактной птицы.

На 14-й день после 2-й вакцинации соотношение корковой и мозговой зон долек тимуса уменьшалось по сравнению с предыдущим сроком исследования у всех бройлеров. У иммунных цыплят 1-й группы это происходило за счет уменьшения размеров корковой и расширения мозговой зон, а у птицы 2-й группы — за счет снижения площади коркового вещества, в то время как размеры мозгового вещества не отличались от предыдущего срока исследования. Кроме того у молодняка 3-й и интактной групп с возрастом отмечалось одновременное увеличение коркового и мозгового слоя. Данные показатели, у вакцинированной птицы с нуклевитом были самыми высокими, и достигали уровня 245,09±24,92 мкм и 258,34±53,98 мкм соответственно, что было больше на 45,8-17,2%, чем у иммунизированных цыплят с альвеозаном, в 1,2 раза выше по сравнению с молодняком, вакцинированным без иммуностимуляторов и в 1,9-1,8 раза больше контрольных показателей. В тоже время отмечалась тенденция к снижению плотности тимоцитов в корковом и мозговом веществе долек тимуса у иммунной птицы 1-й и 2-й групп по сравнению с предыдущим сроком исследования, что указывает на миграционную активность клеток в кровяное русло и периферические органы иммунной системы. Однако в эти сроки исследования у бройлеров, вакцинированных совместно с нуклевитом, плотность расположения лимфоцитов в корковом веществе долек была больше на 17,9%, чем у молодняка 2-й группы, на 1,38% по сравнению с вакцинированной птицей без иммуностимуляторов и в 1,4 выше уровня контроля.

В бурсе Фабрициуса на 7-й день после 1-й вакцинации, у иммунного молодняка всех трех групп, отмечалось увеличение размеров коркового вещества. Кроме того, под действием нуклевита у иммунных цыплят 1-й группы, этот показатель был достоверно выше в 1,2 раза по сравнению с птицей иммунизированной одной вакциной и в 1,5 больше, чем у интактных бройлеров. Наименьшим соотношение коркового и мозгового вещества было у птицы иммунизированной одной вакциной и составило 0,34±0,03. Также, у вакцинированных цыплят 1-й, 2-й и 3-й групп, по сравнению с интактной птицей, происходило увеличение площади и периметра лимфоидных узелков с одновременным снижением плотности расположения лимфоцитов в них. Так, иммунизация цыплят с одновременным введением нуклевита, способствовала снижению плотности лимфоцитов в корковом слое на 7,4-11% и в 1,2-1,3 раза была ниже в мозговом веществе по сравнению с цыплятами других групп.

При изучении плазмоцитарной реакции на 7-й день после 1-й вакцинации в бурсе цыплят-бройлеров всех подопытных групп общее число плазматических клеток достоверно превышало аналогичные показатели у интактной птицы, и уровень их был выше в 1,3-1,5 раза. Увеличение числа плазматических клеток происходило, в основном, за счет незрелых форм. Так, количество плазмобластов и проплазмоцитов у иммунных цыплят 1-й и 3-й групп было в 1,2-1,6 раза достоверно выше, чем у контрольной птицы. Также вакцинация цыплят способствовала повышению содержания плазмоцитов, и уровень их у бройлеров всех трех групп был достоверно выше в 1,3-2 раза, чем у молодняка контрольной группы. Кроме того под влиянием вакцинации у птицы всех трех групп происходила активизация митотической активности, и количество митозов было достоверно выше в 1,5-2,4 раза, по сравнению с контрольными показателями. Самое высокое количество митозов отмечалось у молодняка 1-й группы и число их равнялось 15,25±3,59, что было выше на 19,6%, чем у вакцинированных цыплят с альвеозаном, в 1,6 раза — по сравнению с бройлерами, иммунизированными одной вакциной и в 2,4 раза — чем у интактного молодняка.

На 7-й день после 2-й вакцинации нами установлено, что с возрастом у вакцинированной птицы всех групп, площадь и периметр лимфоидных узелков уменьшились. Однако у вакцинированных бройлеров, получавших нуклевит, эти показатели были самыми высокими, и были соответственно на 65,9-28,3% больше по сравнению с цыплятами, вакцинированными с альвеозаном, в 2,1-1,5 раза выше, чем у птицы, вакцинированной без иммуностимуляторов и на 49,7-19,5% больше по сравнению с интактными цыплятами. Кроме того отмечались возрастные изменения соотношения коркового и мозгового вещества, а именно увеличение этого коэффициента по сравнению с предыдущим сроком исследования у молодняка всех подопытных групп, что связано с увеличением размеров коркового вещества лимфоидных узелков бурсы. При этом данный показатель достигал наивысшего уровня у бройлеров, иммунизированных с нуклевитом и альвеозаном, и был соответственно выше в 1,26-1,34 раза по сравнению с птицей, вакцинированной без иммуностимуляторов и на 19-26% больше чем в контроле. Одновременно у всех иммунных цыплят 1-й, 2-й и 3-й групп выявлялось сужение мозгового вещества. Однако у бройлеров контрольной группы этот показатель был самый высокий среди молодняка всех исследуемых групп — 92,25±29,6 мкм, а самый низкий — у вакцинированных цыплят с альвеозаном — 48,03±6,54 мкм.

Под действием нуклевита и альвеозана у иммунных бройлеров 1-й и 2-й групп на 7-й день после 2-й вакцинации незначительно увеличивалась плотность расположения лимфоцитов в корковом и мозговом веществе как по сравнению с предыдущим сроком исследования, так и между остальными группами. Однако наиболее рыхло располагались лимфоциты в корковом и мозговом слое лимфоидных узелков у иммунизированных цыплят 3-й группы (9,5±2,09; 2,9±0,79). В бурсе отдельных бройлеров этой группы отмечались атрофические процессы: разрушение узелков с формированием кист и превращение их в железистые структуры с эпителиальной выстилкой.

В эти сроки исследования в бурсе иммунных цыплят активизировалась плазмоцитарная реакция и характеризовалась повышением содержания всех форм плазматических клеток по сравнению с контрольными

показателями. Однако под действием нуклевита происходило наиболее активное накопление плазмоцитов $(99,5\pm0,58)$, и уровень их был достоверно больше на 7,9% чем у бройлеров, получавших альвеозан и в 1,2-1,3 раза по сравнению с молодняком, иммунизированным одной вакциной и контролем соответственно. В тоже время введение иммуностимуляторов птице 1-й и 2-й групп усиливало пролиферативную активность клеток — число митозов было достоверно больше в 1,7 раза, чем у молодняка, иммунизированного одной вакциной и в 2,1 раза по сравнению с интактными бройлерами.

На 14-й день после 2-й вакцинации в бурсе Фабрициуса иммунных цыплят 1-й группы отмечалось увеличение размеров лимфоидных узелков, периметр и площадь у которых были больше на 17,2-35,2% по сравнению с бройлерами, вакцинированными с альвеозаном и на 13,8-33,1%, чем у молодняка, вакцинированного без иммуностимуляторов. Кроме того под действием иммуностимуляторов у иммунных цыплят 1-й и 2-й группы происходило уменьшение площади коркового вещества с одновременным расширением размеров мозгового вещества узелков бурсы. Особенно интенсивно данный процесс протекал у бройлеров 1-й группы. Размеры мозгового вещества у цыплят этой группы достигали уровня 104,4±34,36 мкм, что выше в 1,6 раза показателей у вакцинированной птицы с альвеозаном и в 1,7 раза – чем у цыплят, иммунизированных одной вакциной и на 15,9% больше по сравнению с контролем. Несмотря на сужение коркового вещества узелков бурсы у подопытной птицы всех групп, плотность расположении лимфоцитов в них с возрастом существенно не изменилась у иммунизированных цыплят 1-й группы, а у молодняка остальных трех групп была выше, по сравнению с предыдущим сроком исследования. Этот показатель был самым высоким у интактной птицы и равнялся 12,6±0,22, а самым низким у цыплят, вакцинированных с нуклевитом - 10,88±0,89. Под действием иммуностимуляторов у молодняка 1-й и 2-й групп повышалась плотность лимфоцитов в мозговом веществе узелков бурсы, как по сравнению предыдущим сроком исследования, так и с цыплятами 3-й и 4-й групп, что связано с активизацией пролиферативных и миграционных способностей лимфоцитов. Наиболее рыхло располагались лимфоциты в мозговом слое узелков бройлеров, иммунизированных одной вакциной (3,225±0,8).

В данный возрастной период иммунологическая перестройка в бурсе цыплят всех подопытных групп характеризовалась уменьшением числа бластных форм клеток. При этом у иммунной птицы 1-й, 2-й и 3-й групп количество плазмобластов было по-прежнему достоверно выше в 1,9-2,3 раза, чем контрольные показатели. Одновременно, наблюдалоь уменьшение числа проплазмоцитов и снижение митотической активности клеток. Наиболее активно иммунная перестройка в данном органе происходила у вакцинированной птицы, получавшей нуклевит. У цыплят этой группы количество всех форм плазматических клеток и митозов было значительно выше, чем у бройлеров других групп. Так, число плазмоцитов (28,75±0,96) достоверно превышало аналогичные показатели у молодняка 2-й группы на 33,7%, 3-й группы – на 42,0% и в контрольной группе в 2 раза.

На 7-й день после 1-й вакцинации в селезенке птицы уже сформировались единичные лимфоидные узелки, площадь и периметр которых были больше у иммунных цыплят. Так, у молодняка 2-й группы данный показатель был достоверно выше в 1,8-1,3 раза соответственно, чем у контрольной птицы и на 19-6,6% больше по сравнению с молодняком 3-й группы.

Иммунологическая перестройка в селезенке, вакцинированных цыплят трех групп, характеризовалась активизацией процессов бласттрансформации, накоплением проплазмоцитов и плазмоцитов по сравнению с интактной птицей. Так, под действием иммуностимуляторов у вакцинированных цыплят 1-й и 2-й групп в 1,8-2,1 раза достоверно повышалось содержание лимфобластов, по сравнению с бройлерами, иммунизированными одной вакциной и на 29-48%,чем у интактной птицы. Аналогичные результаты получены при подсчете числа плазмобластов: у цыплят 1-й группы их было в 1,7 раза достоверно больше, а у молодняка 2-й группы на 43,6-41,8% — чем у бройлеров 3-й и 4-й группы. Одновременно, в 1,4-2,2 раза под действием нуклевита у вакцинированных цыплят достоверно увеличивалось количество проплазмоцитов и плазмоцитов по сравнению с иммунизированной птицей с альвеозаном, и было выше в 2,3-2,5 раза — чем у вакцинированных без иммуностимуляторов и в 3,4 раза — по сравнению с контролем. Такая же тенденция прослеживалась у иммунных цыплят 1-й группы при подсчете митотических клеток. Отмечалось достоверное увеличение числа митозов в 2,4 раза по сравнению с иммунизированной птицей одной вакциной и в 2,1 раза — с интактным молодняком.

На 7-й день после 2-й вакцинации в селезенке иммунных цыплят увеличивалась площадь и периметр узелков. Причем применение нуклевита стимулировало формирование узелков у вакцинированной птицы, периметр и средняя площадь которых у молодняка 1-й группы были на 2,8-3,4% больше, чем у цыплят, вакцинированных без иммуномодулятора, и на 22-51,9% по сравнению с контрольной птицей. Одновременно, под действием нуклевита, у иммунного молодняка 1-й группы происходило увеличение числа лимфоидных узелков на условную единицу площади, и количество их было достоверно больше на 21% по сравнению с вакцинированными цыплятами 2-й и 3-й групп и в 1,3 раза выше, чем у бройлеров 4-й интактной группы.

Изучение плазмоцитарной реакции в селезенке в эти сроки исследования показало, что у цыплят всех групп, по сравнению с предыдущим сроком исследования, незначительно увеличивалось общее количество плазматических клеток. Количество бластных форм лимфоцитов с возрастом у молодняка всех подопытных групп уменьшалось, но было достоверно выше в 2-2,4 раза у цыплят, вакцинированных с иммуностимуляторами по сравнению с птицей, иммунизированной одной вакциной и на 33-59% больше чем в контроле. Вакцинация также способствовала увеличению количества незрелых и зрелых форм плазматических клеток у птицы 1-й, 2-й и 3-й групп по сравнению с интактным молодняком. Так у вакцинированных бройлеров под действием нуклевита повышалось содержание плазмоцитов, и уровень их составлял 14,5±3,32, что было достоверно выше показателей у птицы остальных групп.

В селезенке птицы на 14-й день после 2-й вакцинации при гистологическом исследовании установлено, что у птицы всех иммунных групп с возрастом увеличивалось количество и размеры лимфоидных узелков и, попрежнему, данные показатели были больше у вакцинированного молодняка с нуклевитом. Размеры средней площади лимфоидных узелков у цыплят 1-й группы превышали на 3,5% аналогичные показатели у вакцинированных без иммуностимуляторов бройлеров, на 10,7% - у иммунной птицы с альвеозаном и в 1,5 раза были достоверно выше, чем у интактной птицы. В эти сроки исследования под действием вакцинного штамма

ускорялся процесс формирования лимфоидных узелков в селезенке всех трех групп. Количество их было 2,5-2,8 раза выше контрольных показателей.

В этот возрастной период в селезенке у цыплят всех групп отмечалась дальнейшая тенденция снижения содержания незрелых форм с одновременным увеличением зрелых плазматических клеток. Однако по-прежнему количество всех видов плазматических клеток было выше у вакцинированных цыплят с добавлением иммуностимуляторов. Так под влиянием нуклевита у иммунных цыплят 1-й группы количество плазмоцитов и проплазмоцитов было выше на 24-49% по сравнению с птицей 2-й и на 17,3-91% - 3-й групп и превышало аналогичный показатель у интактных бройлеров в 1,85-2,1 раза. С возрастом митотическая активность клеток снижалась и достоверных различий между группами молодняка кур не имела.

В пищеводной миндалине иммунных цыплят, во все сроки исследования, отмечалось увеличение общего количества плазматических клеток, и уровень их был в 1,3-1,4 раза достоверно больше, чем контрольные показатели. У вакцинированных бройлеров увеличение общего числа плазматических клеток происходило, в значительной мере, за счет размножения плазмобластов и проплазмоцитов, и их содержание было выше, чем у птицы 4-й группы в 1,3-1,4 раза и в 1,3-1,5 раза соответственно. Одновременно применение нуклевита и альвеозана при вакцинации цыплят активизировало пролиферацию плазмоцитов и уровень их, на 7-й день после 2-й вакцинации, у иммунных бройлеров 1-й группы был выше в 1,47 раза по сравнению с иммунными цыплятами 2-й группы и в 2,5 раза по сравнению с контрольными показателями. Количество бластных форм, с возрастом уменьшалось, но было в 1,2-1,7 раза достоверно выше у иммунной птицы по сравнению с контролем. Одновременно снижалась митотическая активность клеток. Кроме того иммунизация молодняка стимулировала образование лимфоидных узелков, размеры которых у подопытных цыплят превышали аналогичный показатель у интактной птицы.

В дивертикуле Меккеля вакцинированных цыплят во все сроки исследования число плазматических клеток достоверно превышало аналогичные показатели у контрольной птицы. Однако у молодняка, вакцинированного с иммуностимуляторами, уровень этих клеток был выше 1,2-2,6 раза по сравнению с бройлерами, иммунизированными одной вакциной. С возрастом нуклевит и альвеозан, у вакцинированных цыплят способствовал увеличению числа и размеров лимфоидных узелков. Одновременно применение нуклевита способствовало увеличению количества плазмоцитов у цыплят 1-й группы, и уровень их был на 27% больше чем у бройлеров, вакцинированных с альвеозаном и в 1,3-2,1 раза выше по сравнению с молодняком, вакцинированным без иммуностимуляторов и контролем соответственно. Митотическая активность с возрастом снижалась и существенно не отличалась между группами.

В слепокишечных миндалинах на 7-й день после 1-й вакцинации, у иммунных цыплят 1-й, 2-й и 3-й групп общее количество плазматических клеток было в 1,2-1,3 раза достоверно выше, чем у интактной птицы. Число клеток в состоянии митоза у подопытных бройлеров всех трех групп было также на 10-40% больше, чем в контроле. У иммунизированного с нуклевитом молодняка отмечалось увеличение количества плазмоцитов. Содержание этих клеток было больше на 21% по сравнению с птицей вакцинированной и получавшей альвеозан, на 31% - чем у вакцинированного молодняка без иммуностимуляторов и в 1,55 раз выше контрольных показателей. С возрастом активность плазмоцитарной реакции у вакцинированных цыплят не снижалась. Однако применение нуклевита вызывало увеличение общего числа плазматических клеток за счет повышения содержания плазмоцитов с одновременным снижением плазмобластов и проплазмоцитов. Причем уровень зрелых клеток в этой группе бройлеров был достоверно больше на 56% по сравнению с птицей, вакцинированной без иммуностимуляторов и в 3 раза выше показателей в контроле. Кроме того в соединительной ткани органа выявлялось большое количество плазматических клеток на разных стадиях дифференцировки, а так же микро-, макрофагов и лимфоцитов.

Заключение. 1. Двукратная иммунизация цыплят против болезни Гамборо живой вирус-вакциной из штамма «КМИЭВ-13» вызывает в органах иммунной системы иммуноморфологические изменения, проявляющиеся в расширении корковой, а затем мозговой зоны в тимусе, усилении миграционной способности тимоцитов, увеличении размеров лимфоидных узелков в фабрициевой бурсе и селезенке, а также активизации в органах иммунной системы, по сравнению с контролем плазмоцитарной реакции.

2. Применение нуклевита и альвеозана у птиц повышает индекс тимуса, усиливает миграционную способность тимоцитов, повышает индекс и размеры лимфоидных узелков фабрициевой бурсы, расширяет корковые зоны в них, активизирует плазмоцитарную реакцию в дивертикуле Меккеля, пищеводной и слепокишечной миндалинах, что свидетельствует об иммуностимулирующем действии препаратов на организм животных.

Литература. 1. Бирман, Б.Я. Диагностика, лечение и профилактика иммунодефицитов птиц: Монография / Б.Я. Бирман, И.Н. Громов — Мн.: Бизнесофсет, 2004. — 102 с. 2. Бирман, Б.Я. Болезни птиц./Б.Я. Бирман, В.П. Голубничий - Минск,1996.-251 с. 3. Бирман, Б.Я. Эпизоотическая активность новой живой эмбриональной вирус-вакцины против инфекционной бурсальной болезни из штамма «КМИЭВ-15» (БД-2) / Б.Я. Бирман, М.С. Жаков, К.К. Дягилев, В.Н. Грушин // Информационный бюллетень по птицеводству. - 2000.- №2.- С. 28-32. 4. Громов, И.Н. Влияние натрия тиосульфата на морфологию паренхиматозных органов птиц при ассоциированной вакцинации против вирусных болезней / И.Н. Громов, В.С. Прудников, И.В. Клименкова, М.К. Селиханова // Современные научные тенденции в животноводстве: сборник статей Международной научно-практической конференции, посвященной 100-летию со дня рождения П.Г. Петского — Киров: Вятская ГСХА, 2009. — ч.2 Ветеринарная медицина. — С.75-79. 5. Грушин, В.Н. Иммуноморфологические аспекты использования иммуностимуляторов при вакцинации цыплят против болезни Гамборо и Ньюкасла/ В.Н. Грушин, Ф.Д. Гуков, И.М. Луппова // Исследования молодых ученых в решении проблем животноводства: Материалы /// Международной научно-практической конференции, г. Витебск, 30 мая 2003 года. - Витебск, 2003.-С.74-76. 6. Карпенко, Е.А. Влияние различных схем вакцинации цыплят против инфекционного бронхита на морфометрические показатели бурсы Фабрициуса и селезенки / Е.А. Карпенко, Н.М. Симакова, Е.В. Амброзевич // Современные научные тенденции в животноводстве: сборник статей Международной научно-практической конференции, посвященной 100-летию со дня рождения П.Г. Петского – Киров: Вятская ГСХА, 2009. — ч.2 Ветеринарная медицина. — С.122-124. 7. Красочко, П.А. Иммунитет и его коррекция в ветеринарной медицине/ П.А. Красочко, В.С. Прудников, О.Г. Новиков и др. - Смоленск, 2001 — 323 с. 8. Меркулов, Г.А. Курс патогистологической техники / Г.А. Меркулов. — Л., 1969. — 432 с.

Статья поступила 4.10.2010г.