valence of Toxoplasma gondii infection in cattle, sheep, goats and pigs from the North of Portugal for human consumption / A. P. Lopes, J. P. Dubey, F. Neto, A. Rodrigues, T. Martins, M. Rodrigues, L. Cardoso // Vet. Parasitol., 2013. – № 193(1-3). – P. 266-269. 14. Luciano D. M. Occurrence of anti-Toxoplasma gondii antibodies in cattle and pigs slaughtered, State of Rio de Janeiro / D. M. Luciano, R. C. Menezes, L. C. Ferreira, J. L. Nicolau, L. B. das Neves, R. M. Luciano, M. A. Dahroug, M. R. Amendoeira // Rev. Bras. Parasitol. Vet., 2011. - № 20(4). - P. 351-353. 15. Matsuo, K. Seroprevalence of Toxoplasma gondii infection in cattle, horses, pigs and chickens in Japan / K. Matsuo, R. Kamai, H. Uetsu, H. Goto, Y. Takashima, K. Nagamune // Parasitology International, 2014. – № 63. – P. 638-639. 16. Miao, Q. Seroprevalence of Toxoplasma gondii in horses and donkeys in Yunnan Province, Southwestern China / Q. Miao, X. Wang, L. N. She, Y. T. Fan, F. Z. Yuan, J. F. Yang, X. Q. Zhu, F. C. Zou // Parasit. Vectors, 2013. – № 6. – P. 168. 17. Raeghi, S. Seroprevalence of Toxoplasma gondii in Sheep, Cattle and Horses in Urmia North-West of Iran / S. Raeghi, A. Akaberi, S. Sedeghi // Iran. J. Parasitol., 2011. – № 6(4). – P. 90-94. 18. Singh, H. Detection of antibodies to Toxoplasma gondii in domesticated ruminants by recombinant truncated SAG2 enzyme-linked immunosorbent assay / H. Singh, A. K. Tewari, A. K. Mishra, B. Maharana, V. Sudan, O. K. Raina, J. R. Rao // Trop. Anim. Health Prod., 2015. – № 47(1). – P. 171-178.

УДК 619:616.993.192.1:576.895.131:636.934.23-57

ФОРМИРОВАНИЕ ПАРАЗИТАРНЫХ СИСТЕМ В ПРОМЫШЛЕННОМ ЗВЕРОВОДСТВЕ

Герасимчик В.А., Зыбина О.Ю.

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

В промышленном звероводстве Республики Беларусь у хорьков-фуро (Putorius Putorius L.) и норок (Mustela vison, Schr.) установлено по 4 вида кишечных паразитов (Eimeria vison, E. furonis, Isospora laidlawi, I. eversmanni);); у серебристочерных лисиц (Vulpes fulvus) — 8 видов (Isospora vulpina, I. buriatica, I. canivelocis, I. triffitti, Eimeria vulpis, T. leonina, T. canis, U. stenocephala); у песцов (Alopex lagopus) — 7 видов (Isospora-buriatica, I. vulpina, I. canivelocis, I. triffitti, Toxocara canis, Toxascaris leonina, Uncinaria stenocephala, у блюфростов (Vulpes vulpes × Alopex lagopus, англ. ВІше frost fox) — 4 вида (Isospora buriatica, I. vulpina, T. canis, T. leonina). Ключевые слова: зверохозяйства, хорек-фуро, норка, серебристо-черная лисица, песец, блюфрост, эндопаразиты.

FORMATION OF PARASITARY SYSTEMS IN INDUSTRIAL FUR FARMING

Herasimchyk U., Zybina V.

Vitebsk State Academy of Veterinary Medicine, Vitebsk, Republic of Belarus

In industrial fur farming of the Republic of Belarus in ferrets-furo (Putorius Putorius L.) and mink (Mustela vison, Schr.) there have been found 4 species of intestinal parasites (Eimeria vison, E. furonis, Isospora laidlawi, I. eversmanni); in silver foxes (Vulpes fulvus) – 8 species (Isospora vulpina, I. buriatica, I. canivelocis, I. triffitti, Eimeria vulpis, T. leonina, T. canis, U. stenocephala); a arctic foxes (Alopex lagopus) – 7 species (Isospora buriatica, I. vulpina, I. canivelocis, I. triffitti, Toxocara canis, Toxascaris leonina, Uncinaria stenocephala); in blue frost – 4 species (Isospora buriatica, I. vulpina, T. canis, T. leonina). **Keywords**: fur producing farms, ferret-furo, mink, silver black fox, arctic fox, bluefrost, endoparasites.

Введение. В Республике Беларусь важная роль отводится пушному звероводству. Промышленное звероводство является важной сырьевой базой меховой промышленности и пушного экспорта, так как на его долю в республике приходится свыше 98% заготавливаемых шкурок норок, лисиц, песцов, нутрий и хорьков [1].

К наиболее ценным пушным зверям, которые приспособились к жизни в неволе, приносят потомство и дают высококачественную шкурку, относятся: хорек (Putorius putorius) и норка (Mustela vison) из семейства куньих (Mustelidae); серебристо-черная лисица (Vulpes fulvus), песец (Alopex lagopus) и блюфрост (Blue frost fox) из семейства псовых (Canidae), отряда хищных (Carnivora) [2].

При переводе пушных зверей на индустриальную форму содержания в значительной мере изменились условия среды их обитания. Это позволило ликвидировать в зверохозяйствах нашей республики такие паразитарные болезни, как аляриоз, мезоцестоидоз, капилляриозы, томинксоз, кренозомоз, филяриоз и диоктофимоз. Но по-прежнему у плотоядных пушных зверей в Беларуси проблемой являются инвазионные болезни, вызываемые паразитическими простейшими родов — Eimeria, Isospora и нематодами — Toxascaris, Toxocara и Uncinaria, которые адаптировались к новым условиям содержания пушных зверей [1].

Эймериидозы и нематодозы являются самыми распространенными кишечными паразитозами, которые периодически регистрируются во всех зверохозяйствах зарубежных стран и Республики Беларусь, поражая от 20 до 72% хорьков, норок, серебристо-черных лисиц, песцов и блюфростов, вызывая при этом истощение организма, отставание зверьков в росте и живой массе, увеличение затрат корма на единицу прироста, недополучение щенков; сказываются на качестве пушнины, нередко вызывая падеж животных и таким образом наносят зверохозяйствам ощутимый экономический ущерб [1, 3, 6, 7, 8, 9, 10].

Поэтому для успешной борьбы с эймериидозами и нематодозами пушных зверей необходимо всесторонне изучить видовой состав эндопаразитов, их жизненный цикл, закономерности локализации в организме, распространение в зависимости от вида, возраста, пола, сезона года, особенностей кормления и содержания зверьков.

Материалы и методы исследований. Паразитологическое обследование хорьков, норок, серебристо-черных лисиц, песцов и блюфростов с целью изучения видового состава кишечных паразитов проводилось нами во всех 8 крупных зверохозяйствах Белкоопсоюза и на 22 зверофермах, принадлежащих колхозам, малым и арендным предприятиям Республики Беларусь в течение 1990–2017 гг.

За время обследования на эндопаразитозы был отобран материал от 8692 норок различной типовой окраски, 572 хорьков, 3558 песцов, 1879 серебристо-черных лисиц и 178 блюфростов (128 самок и 50 самцов) различного возраста, пола и физиологического состояния; в том числе вскрыто 346 тушек норок, 26 — хорьков, 168 — песцов, 127 — лисиц, 23 — блюфростов различного пола и возраста. Материалом для исследований служили фекалии, органы вынужденно убитых и павших пушных зверей, взятые индивидуально и содержащие ооцисты эймериид и яйца гельминтов на различных стадиях развития.

Копроскопические исследования проводили по предложенному нами «Способу экспресс-диагностики эймериидозов и нематодозов плотоядных животных» (Патент Украины № 26241 от 10.09.2007 г., бюллетень № 14) [4].

Интенсивность инвазии определяли путем подсчета ооцист эймерий и изоспор, яиц гельминтов в 10 полях зрения микроскопа (п. з. м.) и выражали в среднем на одно п. з. м., одном грамме фекалий и содержимом кишечника при увеличении (окуляр 10, объектив – 10, 20 и 40) с бинокулярной насадкой

АУ-12. При проведении исследований руководствовались Государственным стандартом «Методы лабораторной диагностики кокцидиозов» (ГОСТ–25383-82) [5].

В связи с многообразием синонимов одних и тех же видов эймериид в различных странах нами была проведена морфобиологическая оценка выявленных видов эймерий и изоспор у хорьков, норок, серебристо-черных лисиц, песцов и блюфростов в сравнительном аспекте.

При описании вида эймерийд обращали внимание на следующие морфологические и биологические признаки простейших: форму и размер ооцист (с помощью окулярного винтового микрометра AM9-2), индекс формы (отношение длины к ширине), окраску, толщину и характер поверхности оболочки; наличие микропиле, полярной гранулы, их размеры и форму; количество, величину спор, спорозоитов и особенности их строения; наличие или отсутствие остаточного тела в ооцистах и спорах; продолжительность спорогонии, сроков препатентного и патентного периодов, локализацию в организме (главным образом в кишечнике). Описание морфологических признаков ооцист, как и определение их вида, проводили при увеличении 10 × 40. Ооцисты исследовались как свежевыделенные, так и находящиеся на различных стадиях спорогонии.

Для определения локализации эймерий и изоспор в организме пушных зверей проводили патологоанатомическое вскрытие павших зверьков, у которых исследовали кишечник на всем его протяжении, мезентериальные лимфоузлы и внутренние паренхиматозные органы. Соскобы с эпителиального слоя кишечника брали через каждые 5 см, начиная от пилоруса и заканчивая прямой кишкой. Приготовленные нативные мазки исследовали под малым и средним увеличением микроскопа.

Полученные результаты по морфологии эндопаразитов сравнивали с данными, имеющимися в научной литературе [6, 7, 8, 9, 10].

При сборе материала отмечали температуру окружающей среды, ландшафтно-географическое расположение зверохозяйств, их ветеринарно-санитарное состояние и численность зверопоголовья. При необходимости осуществляли исследования на бактериозы и вирозы.

Полученные цифровые данные статистически обработали с помощью компьютерной программы Microsoft Excel-2000.

Результаты исследований. Анализ результатов паразитологических исследований показал, что в зверохозяйствах Беларуси с различной численностью поголовья пушных зверей у хорьков (Putorius furo) выявлены только эймериидные кокцидии: два вида изоспор — Isospora laidlawi (73,5% от инвазированных животных) и I. eversmanni (2,9%), а также два вида эймерий — Eimeria vison (8,8% от инвазированных животных) и E. furonis (1,5%). Наиболее распространенным из них является I. laidlawi (73,5% от инвазированных). Наименее распространенный вид — E. furonis (1,5%). Микстинвазия наблюдается у 13,2% хорьков. При этом отмечено сочетанное паразитирование только двух видов эймериид: I. laidlawi + I. eversmanni (7,4%) и I. laidlawi + E. furonis (5,9%). Изучение видового состава показало, что фауна простейших связана с возрастом хорьков. У щенков превалирует I. laidlawi.

При паразитологическом обследовании *норок* (*Mustela vison*) нами обнаружено два вида эймерий — *Eimeria vison*, *E. furonis* и два вида изоспор — *Isospora laidlawi*, *I. eversmanni*. Наиболее распространенным видом является *E. vison*, установленный у 57,1% инвазированных зверьков. При этом у норок, начиная с 5-мес. возраста, этот вид доминирует над тремя остальными (46,34—91,57% от инвазированных животных). На втором месте по степени распространения находится *I. laidlawi* (36,01%), чаще поражающий щенков 1,5—4-мес. возраста. Затем следует *E. furonis* (6,30%) и *I. eversmanni* (0,66%). Микстинвазия наблюдается у 8,98% зараженных животных. При этом соче-

танное паразитирование двух видов простейших отмечено у 8,62%, трех – у 0,36% зверьков. Максимальное количество одновременно паразитирующих у одного хозяина видов простейших – 3: *E. vison* + *E. furonis* + *I. laidlawi* (0,36%).

Изучение видового состава показало, что фауна простейших некоторым образом связана с возрастом норок, но не зависит от их типовой окраски и пола.

У серебристо-черных лисиц (Vulpes fulvus) выявлено — 8 видов эндопаразитов: Isospora vulpina (45,2% от инвазированных животных), I. buriatica (31,7%), I. canivelocis (1,5%), I. triffitti (1,1%), Eimeria vulpis (8,2%) (описанные нами в Беларуси впервые), T. canis (10,7%), T. leonina (0,8%) и U. stenocephala (0,8%). Бо́льший удельный вес среди эндопаразитов занимают эймерииды (87,8% от зараженных), меньший — нематоды (12,2%). Наиболее распространенными паразитами являются I. vulpina (45,2%) и I. buriatica (31,7%), наименее — T. leonina (0,8%) и U. stenocephala (0,8%).

Исследования показали, что одиночная инвазия одним из восьми эндопаразитов отмечена у 68,1% инвазированных лисиц. У 31,9% зверьков наблюдается ассоциация двумя (30,5%) и тремя (1,3%) видами изоспор и нематод. Максимальное количество видов эндопаразитов, одновременно паразитирующих у одного хозяина — три: *I. vulpina* + *I. buriatica* + *T. canis* (1,0%); *I. vulpina* + *E. vulpis* + *T. canis* (0,4%). Фауна кишечных паразитов связана с полом и возрастом лисиц, а также зависит от ветеринарно-санитарного состояния конкретного зверохозяйства.

У песцов (Alopex lagopus) видовой состав включает 7 видов кишечных паразитов: три вида нематод – *Toxascaris leonina* (54,6% от инвазированных), Toxocara canis (12,2%), Uncinaria stenocephala (0,6%) и четыре вида изоспор – Isospora buriatica (13,5%), I. vulpina (13,0%), I. canivelocis (3,6%) и I. triffitti (2,3%), описанные нами в республике впервые. Больший удельный вес среди эндопаразитов, в отличие от лисиц, занимают нематоды, на долю которых приходится 67,4% зараженных песцов, меньший – изоспоры – 32,6%. Самый эндопаразитов распространенный вид Т. leonina инвазированных), наименее – *U. stenocephala* (0,6%). Исследования показали, что у 94,2% песцов отмечена моноинвазия одним из 4 видов изоспор и 3 видов нематод, зарегистрированных нами в Беларуси. Микстинвазия наблюдается у 5,8% зараженных животных. При этом сочетанное паразитирование двух видов изоспор (*I. buriatica* + *I. vulpina*) отмечено у 3,6%, трех – (I. buriatica + I. vulpina + I. canivelocis) – у 1,7%; ассоциации нематод и изоспор (T. leonina + I. vulpina) – y 0,2%, (T. leonina + I. triffitti) – у 0,2% инвазированных песцов. Изучение видового состава показало, что фауна кишечных паразитов связана с возрастом песцов.

Анализ полученных нами паразитологических исследований показал, что у 19,2% из обследованных нами блюфростов выявлены эндопаразиты 4 видов: Toxascaris leonina (37,5% от инвазированных животных), Toxocara canis (18,8%), Isospora vulpina (31,3%) и I. buriatica (21,9% от инвазированных животных). У 12,5% инвазированных блюфростов отмечена микстинвазия изоспор (Isospora vulpina + Isospora buriatica), у 18,8% — микстинвазия изоспор и нематод (Isospora vulpina + Toxascaris leonina). На долю нематод приходится 56,3 %, изоспор — 43,7% инвазированных блюфростов. Наиболее сильно заражен молодняк до года (71,9% от инвазированных животных), менее — взрослые блюфросты (28,1% от инвазированных животных). У самок старше года экстенсивность инвазии достигала 68%, у самцов — 32% (от инвазированных животных). Средняя интенсивность изоспорозной инвазии составила 13 ооцист в поле зрения микроскопа (п. з. м.), при увеличении 10×10: средняя интенсивность нематодозной инвазии — 4 яйца в п. з. м.

Изучение ооцист эймериид и яиц нематод у спонтанно и экспериментально инвазированных пушных зверей позволило уточнить морфологические и биологические особенности эндопаразитов, а также выяснить их рас-

пространение среди хорьков, норок, серебристо-черных лисиц, песцов и блюфростов различных половозрастных групп.

Заключение. В зверохозяйствах Республики Беларусь у хорьков-фуро (Putorius Putorius L.) и норок (Mustela vison, Schr.) установлено по 4 вида эймериид: два вида эймерий (Eimeria vison, E. furonis) и два — изоспор (Isospora laidlawi, I. eversmanni); у серебристо-черных лисиц (Vulpes fulvus) — 8: четыре вида изоспор (Isospora vulpina, I. buriatica, I. canivelocis, I. triffitti), один вид эймерий (E. vulpis) и три вида нематод (T. leonina, T. canis, U. stenocephala); у песцов (Alopex lagopus) — 7 видов кишечных паразитов: четыре вида изоспор (Isospora buriatica, I. vulpina, I. canivelocis, I. triffitti) и три вида нематод (Toxocara canis, Toxascaris leonina, Uncinaria stenocephala); у блюфростов — 4: два вида изоспор (Isospora vulpina, I. buriatica) и два вида нематод (Т. leonina, T. canis).

Самым распространенным видом эндопаразитов у хорьков является Isospora laidlawi (73,53% от инвазированных зверьков), у норок — Eimeria vison (57,03%), у серебристо-черных лисиц — Isospora vulpina (45,23%), у песцов — Toxascaris Ieonina (54,59%), у блюфростов — Toxascaris Ieonina (37,5% от инвазированных животных). Одиночная инвазия отмечена у 86,76% хорьков, 91,02% норок, 68,13% лисиц, 94,2% песцов и 68,7% блюфростов из числа инвазированных животных. У 13,24%, 8,98%, 31,87%, 5,8% и 31,3% пушных зверей, соответственно, наблюдается микстинвазия.

Изучение ооцист эймериид, яиц, личинок и половозрелых нематод позволило определить их вид, уточнить морфобиологические особенности, определить значение в развитии патологических процессов у пушных зверей и в дальнейшем установить чувствительность к лечебным препаратам.

Литература. 1. Герасимчик, В.А. Кишечные паразитозы пушных зверей (этиология, эпизоотология, патогенез, диагностика, терапия и профилактика): дис. ... докт. вет. наук : 03.00.19 / В.А. Герасимчик. – Минск, 2008. – 358 с. 2. Герасимчик, В.А. Инфекционные и незаразные болезни пушных зверей и кроликов: учебное пособие / В.А. Герасимчик. – Витебск : ВГАВМ, 2012. – 190 с. 3. Герасимчик, В.А. Кишечные паразитозы пушных зверей : монография / В.А. Герасимчик, А.И. Ятусевич. – Витебск, 2009. – 312 с. 4. Герасимчик, В.А. Патент Украины № 26241 «Спосіб експрес-діагностики еймеріїдозів і нематодозів м'ясоїдних тварин» (Способ экспресс-диагностики эймериидозов и нематодозов плотоядных животных). Заявл. 23.04.2007 г., № 20872/3, опубл. 10.09.2007 г., бюллетень №-14. 5. ГОСТ 25383—82 (СТ СЭВ 2547—80). Животные бюллетень №-14. 5. ГОСТ 25383–82 (СТ СЭВ 2547–80). Животные сельскохозяйственные / Методы лабораторной диагностики кокцидиоза. Введ. 1.08.1982. — М.: Издательство стандартов, 1982. — 7 с. 6. Нукербаева, К.К. Протозойные болезни ферменных пушных зверей / К.К. Нукербаева. — Алма-Ата, 1981. – 168 c. 7. Bell, W.B. İsospora laidlawi in mink / W.B. Bell, W.Z. Trelkeld // The Cornell. Vet. –1948. – Vol. 38. – P. 3–6. 8. Hoare, C.A. On the coccidia of the ferret / C.A. Hoare // Ann. Trop. Med. Parasit. – 1927. – Vol. 27. – P. 15–20, 313–321. 9. Kingscote, A.A. A note on the coccidia of the mink / A.A. Kingscote // J. Parasitol. - 1935. - Vol. 21. -P. 126. 10. Pellerdy, L.P. Coccidia and coccidiosis / L.P. Pellerdy. – Budapest. – 1974. – P. 157, 645–653.