- балльная оценка с/х земель, балл; хз - удельный вес затрат NPK на 1 га посевной площади, %; Х4 - удельный вес посевов кукурузы на силос в общей посевной площади, %; хѕ - удельный вес посевов однолетних трав на зеленую массу в общей посевной площади, %.

В результате реализации в MS EXCEL алгоритма регрессионного анализа получено следующее уравнение связи:

Y = 4,117 + 1,774x1 + 1,622x2 + 0,237x3 + 0,968x4 - 0,688x5

В данном примере можно дать следующую интерпретацию уравнению: уровень выхода кормов с 1 га кормовых культур повысится на 1,774 ц.к.ед при увеличении качества пашни на 1 балл; на 1,622 ц.к.ед при увеличении качества с/х земель на 1 балл; на 0,237 ц.к.ед в результате увеличения удельного веса затрат NPK на 1 га посевной площади на 1 п.п. и тд. Величина коэффициента множественной корреляции составляет 0,62 и означает, что в 62 случаях из 100 выбранные факторы влияют на значение результативного показателя.

На основании вышеизложенного можно сделать вывод о том, что выявленные в процессе стохастического анализа закономерности и количественные взаимосвязи позволяют осуществлять краткосрочные и среднесрочные прогнозы производства и переработки продукции кормовых культур с применением различных вариантов изменения значений факторов. Таким образом, одним из методов прогнозирования производства и переработки продукции кормовых культур является стохастический анализ.

УДК 633.2/.3:631.8

КУЗНЕЦОВА Н.Ю., студентка

Научный руководитель КОВГАНОВ В.Ф., ассистент

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

СТРУКТУРА ЛУГОВЫХ ТРАВОСТОЕВ ПОСЛЕ ПРИЕМОВ ПОВЕРХНОСТНОГО УЛУЧШЕНИЯ

Урожай многолетних трав слагается из побегов и их органов. В большинстве случаев соотношение побегов и органов бывает разным и зависит от вида растения, его возраста и условий произрастания. Кормовая же ценность зависит в первую очередь от облистевнности побегов. Не секрет, что в кормовом отношении листья являются наиболее ценной частью растений, так как в них содержится в несколько раз больше питательных веществ, чем в стеблях.

Целью исследований являлось установить, как приемы поверхностного улучшения в зависимости от минерального питания влияют на структуру лугового травостоя.

Экспериментальные исследования проводились на разнотравно-злаковом травостое восьмого года жизни, состоящего из 75% злаков и 25% разнотравья. Почва экспериментального участка — дерново-подзолистая, среднесуглинистая. Опыт включал в себя приемы поверхностного улучшения: старовозрастной травостой (контроль); омоложение травостоя путем двукратного дискования; подсев бобовых трав в дернину, а также фон минеральных удобрений: без удобрений, $P_{90}K_{140}$ и $N_{90}P_{90}K_{140}$.

В результате исследований было установлено, что в среднем за четыре года наиболее существенное влияние на количество побегов, массу 100 стеблей и облиственность на всех приемах улучшения оказывало минеральное питание. Так, внесение $N_{90}P_{90}K_{140}$ на старовозрастном травостое способствовало

увеличению количества стеблей на 339 шт./м². Прием омоложения травостоя путем двукратного дискования существенных изменений на структуру не оказал. Количество стеблей на фоне полного минерального питания составило 464 шт./м², из них 243 шт. занимает ежа сборная при массе 100 сырых побегов – 169,2 г.

Следует отметить, что существенное изменение структуры наблюдалось после подсева бобовых трав в дернину. На фоне $P_{90}K_{140}$ количество побегов было на уровне 320 шт./м², из них 162 побега - это бобовые. Среди бобового компонента наибольшее число побегов было у клевера гибридного — 148 штук. При этом масса 100 побегов составила 416,5 г. Внесение азота в дозе N_{90} на фоне $P_{90}K_{140}$ приводит к увеличению количества побегов злаковых трав на 84,2%, или 133 побега, а количество побегов бобовых трав при этом практически не изменилось.

УДК 633.2.04

ЛАБАН С.Н., студентка

Научный руководитель ЩЕБЕТОК И.В., канд. с.-х. наук, доцент

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

ПРОДУКТИВНОСТЬ ДОЙНЫХ КОРОВ В ЗАВИСИМОСТИ ОТ СИСТЕМЫ СОДЕРЖАНИЯ

Повышение продуктивности коров и рентабельности производства молока на сегодняшний день является главной задачей отрасли молочного скотоводства.

Целью работы являлось проведение гигиенической оценки условий содержания дойных коров. Исследования проводились в РУСП «Экспериментальная база «Майск» Ивацевичского района Брестской области. Животные первой группы являлись контрольными и содержались в помещении с предоставлением выгула на выгульной площадке. Коровы второй (опытной) группы содержались на пастбище, а для доения пригонялись в помещение. Время опыта — 90 дней (летний период).

На молочно-товарной ферме № 1 применяется стойлово-выгульная система, т.е. в течение всего года животные содержатся в привязном коровнике с предоставлением выгула на прифермской площадке. В пастбищный период для коров организован подвоз зеленой массы в помещение. При исследовании микроклимата коровника было установлено, что температура в помещении превышала норматив на 5,2 °C. Относительная влажность воздуха и концентрация аммиака находились в допустимых границах. Скорость движения воздуха отмечалась выше нормативной на 24 %, в коровнике ощущался сквозняк, так как для поступления свежего воздуха были открыты окна и ворота.

На молочно-товарной ферме № 3 применяется стойлово-пастбищное содержание коров. По окончании зимне-стойлового периода животные содержатся на пастбище, а для доения пригоняются в коровник. На пастбище организован подвоз питьевой воды, в свободном доступе находится поваренная соль.

Анализ молочной продуктивности животных в летний период показал, что среднесуточный удой при стойлово-выгульном содержании коров был ниже по сравнению со стойлово-пастбищным и составил в среднем 14,1 кг. Среднее значение данного показателя за изучаемые месяцы при стойлово-пастбищном