УДК 636.2.054.087.72

ОТЕЧЕСТВЕННЫЕ ОРГАНОМИНЕРАЛЬНЫЕ АДСОРБЕНТЫ МИКОТОКСИНОВ В КОРМЛЕНИИ БЫКОВ-ПРОИЗВОДИТЕЛЕЙ

Карпеня М.М.

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Экспериментально и научно обоснована эффективность применения отечественных органоминеральных адсорбентов микотоксинов кормовой добавки «Витасорб» и продукта сорбирующего «Селтоксорб» в кормлении быков-производителей, позволяющих повысить количество и качество спермопродукции на 5,2-15,2% и оплодотворяющую способность спермы — на 4,2-5,9 процентных пункта. Ключевые слова: быкипроизводители, микотоксины, адсорбенты, спермопродукция, оплодотворяющая способность спермы.

DOMESTIC ORGAN-MINERAL ADSORBENTS OF MYCOTOXINS IN FEEDING MANUFACTURING BULLS

Karpenia M.M.

Vitebsk State Academy of Veterinary Medicine, Vitebsk, Republic of Belarus

Experimentally also the efficiency of use of domestic organ-mineral adsorbents of mycotoxins of "Vitasorb" feed additive and a product of occluding "Seltoksorb" in feeding of the manufacturing bulls allowing to increase quantity and quality of a spermoproduktion for 5,2-15,2% and the impregnating ability of sperm – on 4,2-5,9 percentage points is evidence-based. **Keywords:** manufacturing bulls, mycotoxins, adsorbents, spermoproduction, impregnating ability of sperm.

Введение. В основе этиологии нарушения обмена веществ и понижения уровня иммунного статуса организма крупного рогатого скота зачастую находятся недоброкачественные корма, в которых присутствуют микотоксины, остатки пестицидов, соединения тяжелых и радиоактивных элементов, нитраты [7].

Особенно опасными для животных являются микотоксины. Длительное скармливание кормов даже с незначительным содержанием микотоксинов приводит к накоплению их в организме. В отношении микотоксинов работает эффект синергизма — действие одного микотоксина усиливает действие другого [6, 8, 9]. В научной печати имеется большое количество работ, характеризующих тот или иной адсорбирующий препарат. Однако большинство из них несут в себе рекламный подтекст, что необходимо учитывать при анализе результатов исследований. В связи с этим уместно помнить, что большинство из энтеросорбентов обладают побочным действием — высокая адсорбция, как правило, затрагивает не только токсические, но и питательные вещества (витамины, незаменимые аминокислоты), а в ряде случаев имеет место абразивно-механическое повреждение эпителия слизистой оболочки кишечника [3].

К основным микотоксинам, контаминирующим зерновое сырье, относятся: афлатоксин, охратоксин, Т-2 токсин, дезоксиниваленол, зеараленон и фумонизин [1]. Следует иметь в виду, что микотоксины образуются в кормах при хранении их в условиях повышенной влажности и температуры, отсутствии вентиляции в помещении.

В комбикормах для быков-производителей самыми распространенными микотоксинами являются дезоксиниваленол (ДОН) и зеараленон. Дезоксиниваленол относится к трихотеценовым микотоксинам группы В и продуцируется грибами рода *Fusarium*. Он подавляет иммунную систему, обусловливает снижение поедаемости корма, развитие гастроэнтеритов и может вызвать нарушения работы почек. Зеараленон продуцируется *Fusarium grameniarum*. Он обладает выраженной эстрогенной активностью, нарушает половую функцию у животных. Известно, что в рубце жвачных более 90% потребляемого зеараленона трансформируется в α-зеараленол, который является в 10 раз более эстрогенным. Этот микотоксин в основном поражает органы репродукции животных [3, 4].

В Беларуси микотоксинами загрязнено 40-45% исследованных проб кормов, причем в 6% случаев наблюдается превышение предельно допустимой концентрации [10].

Становится очевидным, что в современных условиях молочного скотоводства необходимо найти эффективные и относительно недорогие способы оптимизации кормовой базы. Одним из таких способов является применение кормовых добавок, разработанных на основе местных сырьевых ресурсов и обладающих определенной адсорбционной активностью.

Цель исследований – установить эффективность применения отечественных органоминеральных адсорбентов микотоксинов в кормлении быков-производителей.

Материалы и методы исследований. Научно-хозяйственные опыты по определению эффективности применения разработанных адсорбентов микотоксинов проводили в условиях РУП «Витебское племенное предприятие» на быках-производителях черно-пестрого скота в зимневесенний период. В первом опыте изучали эффективность использования в кормлении племенных быков адсорбирующей кормовой добавки «Витасорб», во втором — продукта сорбирующего

«Селтоксорб». В состав кормовой добавки «Витасорб» входит: адсорбент минеральный - 85,0 г (в состав которого входят: калий - 6,9%, натрий - 1,8, железо - 4,7, магний - 3,4, кальций - 0,9, фосфор - 0,4, марганец - 0,3%) и сухой инактивированный автолизат дрожжей Saccharomyces cerevisiae - 15,0%. В состав продукта сорбирующего «Селтоксорб» входит: бентонит (цеолитсодержащий комплекс) - 63,2% (минеральная часть которого представлена: кальций - 5,49%, фосфор - 0,12, магний - 3,03, калий - 0,92, железо - 5,20, натрий - 1,92%), органический селен - 33,7% и витамин - 3,1% [2, 5].

Продолжительность каждого опыта составила 120 дней. По принципу пар-аналогов в первом и втором опытах было сформировано по четыре группы быков-производителей: одна контрольная и три опытных по 8 голов в каждой с учетом возраста, живой массы, генотипа, количества и качества спермопродукции. В первом опыте быки-производители 1-й контрольной группы получали основной рацион (сено злаково-бобовое, комбикорм КД-К-66С, СОМ) без внесения кормовой добавки «Витасорб», быки 2 опытной группы наряду с ОР получали 0,1% кормовой добавки «Витасорб» от массы комбикорма (или 4 г на голову в сутки), 3 группы — 0,15% (или 6 г на голову в сутки) и 4 группы — 0,2% от массы комбикорма (или 8 г на голову в сутки). Второй опыт с использованием продукта сорбирующего «Селтоксорб» проводили по такой же схеме, как и первый опыт с использованием таких же доз адсорбента.

В научно-хозяйственных опытах изучали следующие показатели:

- микотоксины в кормах в НИИПВМиБ УО ВГАВМ методом ИФА (иммуноферментный анализ) с использованием систем RYDASCRIN. Иммуноферментный метод основан на изменении содержания микотоксинов в пробах с помощью непрямого твердофазного конкурентного ИФА рабочих растворов экстрактов;
- количество и качество спермы в лаборатории по оценке спермопродукции быковпроизводителей РУП «Витебское племенное предприятие» (еженедельно с начала каждого опыта и до окончания) по ГОСТу 23745-79 «Сперма быков свежеполученная» и ГОСТу 26030-83 «Сперма быков замороженная» с учетом следующих показателей: цвета; запаха; консистенции; объема эякулята, мл; активности (подвижности), баллов; концентрации спермиев, млрд/мл; общего количества спермиев в эякуляте, млрд. Учитывали число полученных и выбракованных эякулятов, количество накопленных и выбракованных по переживаемости спермодоз. Определяли оплодотворяющую способность спермы быков (по количеству плодотворно осемененных коров и телок).

Полученный цифровой материал обработан биометрически методом ПП Excel и Statistica. В работе приняты следующие обозначения уровня значимости: * – P<0,05; ** – P<0,01; *** – P<0,001.

Результаты исследований. На первом этапе работы в лаборатории отдела химикотоксикологических исследований НИИПВМиБ УО ВГАВМ были проведены исследования по изучению эффективности применения кормовой добавки «Витасорб» и продукта сорбирующего «Селтоксорб» в качестве адсорбента митоксинов в комбикормах.

Экспериментально установлено, что кормовая добавка «Витасорб» обладает адсорбирующими свойствами в отношении дезоксиниваленола на 100,00%, T-2 токсина — 91,79, охратоксина — 86,69, афлатоксина — на 100,00, зеараленона — 31,50 и фумонизина — 98,00%. Выявлено, что продукт сорбирующий «Селтоксорб» обладает адсорбционной эффективностью в отношении дезоксиниваленола на 69,08%, T-2 токсина — 86,89, охратоксина — 95,40, афлатоксина — 100,00, зеараленона — 97,39 и фумонизина — на 99,00%. При смене рН среды с кислой на нейтральную (или щелочную) десорбция микотоксинов не происходит.

Применение разработанных адсорбентов микотоксинов в кормлении быков положительно отразилось на их репродуктивной функции. В обоих научно-хозяйственных опытах показатели органолептической оценки спермы у быков всех подопытных групп на протяжении опытов соответствовали нормативным требованиям.

Для того чтобы правильно сформировать подопытные группы, в предварительный период в первом и втором опытах были изучены количественные и качественные показатели спермопродукции быков. Существенных отличий между быками подопытных групп не было.

В результате первого научно-хозяйственного опыта установлено, что по объему эякулята производители 3-й группы превосходили аналогов 1-й группы на 0,24 мл, или на 5,2%, быки 2-й группы – на 0,09 мл, или на 1,9%, животные 4-й группы – на 0,22 мл, или на 3,7% (таблица 1).

У быков 3-й и 4-й групп наблюдалась тенденция повышения активности спермы. Концентрация спермиев в эякуляте у быков 3-й группы по сравнению со сверстниками 1-й группы была больше на 0,1 млрд/мл, или на 7,8% (P<0,05), у производителей 2-й группы — на 0,02 млрд/мл, или на 1,6% и у животных 4-й группы — на 0,09 млрд/мл, или на 7,0% (P<0,05). Количество спермиев в эякуляте у производителей 2-й, 3-й и 4-й групп было выше, чем у быков 1-й группы, соответственно на 0,21 млрд, или на 3,5%, на 0,80 млрд, или на 13,4% (P<0,05) и на 0,65 млрд, или на 10,9% (P<0,05).

За первый опыт наибольшее количество эякулятов было получено от производителей 3-й группы, что на 4,4% больше по сравнению с 1-й группой (таблица 2).

Таблица 1 – Показатели спермы быков-производителей при использовании кормовой добавки «Витасорб»

		Показатели спермы				
Группа		объем эякулята, мл	активность спермы, баллов	концентрация сперми- ев в эякуляте, млрд/мл	количество спермиев в эякуляте, млрд	
1-я – кон- М±m		4,65±0,09	8,0±0,22	1,28±0,03	5,95±0,22	
трольная	Cv	11,7	3,15	11,5	21,5	
2-я – опыт- ная	M±m	4,74±0,22	8,0±0,30	1,30±0,02	6,16±0,18	
	Cv	10,2	4,31	11,8	20,3	
3-я — опыт- ная	M±m	4,89±0,12	8,2±0,28	1,38±0,03*	6,75±0,21*	
	Cv	8,6	3,97	12,7	19,6	
4-я – опыт- ная	M±m	4,82±0,12	8,1±0,34	1,37±0,02*	6,60±0,16*	
	Cv	9,4	4,56	12,4	18,1	

Таблица 2 – Количественные показатели спермопродукции и оплодотворяющая способность спермы быков при использовании кормовой добавки «Витасорб»

	Группа			
Признаки	1-я —	2-я —	3-я —	4-я —
	контрольная	опытная	опытная	опытная
Получено эякулятов за опытный период, шт.	318	320	332	327
Брак эякулятов, %	13,5	12,5	11,4	11,9
Накоплено спермодоз, ед.	38339	39909	39968	40043
Брак спермодоз, %	4,5	4,3	3,8	4,1
Оплодотворяющая способность спермы, %	74,2	76,7	78,4	78,2

У производителей 3-й группы процент брака эякулятов был ниже на 2,1 п.п., у быков 4-й группы – на 1,6 п.п. и у животных 2-й группы – на 1 процентный пункт по сравнению с аналогами контрольной группы. От быков опытных групп было заморожено больше спермодоз по сравнению с контролем. Процент брака спермодоз по переживаемости у быков 2-й, 3-й и 4-й групп был ниже соответственно на 0,2 п.п., 0,7 и 0,4 процентных пункта по сравнению со сверстниками контрольной группы. Оплодотворяющая способность спермы у быков 3-й группы была выше на 4,2 п.п., у производителей 2-й и 4-й групп – соответственно на 2,5 и 4,0 процентных пункта по сравнению с быками 1-й группы.

За период второго опыта объем эякулята у быков 2-й, 3-й и 4-й опытных групп был выше соответственно на 0,11 мл (2,3%), 0,25 мл (5,3%) и 0,23 мл (4,9%) по сравнению с животными контрольной группы (таблица 3).

Таблица 3 – Показатели спермы быков-производителей при использовании продукта сорбирующего «Селтоксорб»

рующего «белтоксоро»						
Группа		Показатели спермы				
		облом одилад	OKTABLIOCTI	концентрация	количество спер-	
		объем эякуля- активность та, мл спермы, баллов		спермиев в эякуля-	миев в эякуляте,	
			те, млрд/мл	млрд		
1-я — кон-	M±m	4,71±0,21	7,9±0,39	1,19±0,04	5,60±0,18	
трольная	Cv	10,3	5,66	12,6	20,4	
2-я – опыт-	M±m	4,82±0,18	8,0±0,31	1,23±0,03	5,93±0,16	
ная	Cv	9,7	4,73	10,7	19,5	
3-я – опыт-	M±m	4,96±0,14	8,1±0,36	1,30±0,04*	6,45±0,14**	
ная	Cv	7,9	5,01	11,2	18,1	
4-я — опыт-	M±m	4,94±0,11	8,0±0,42	1,29±0,03*	6,37±0,15**	
ная	Cv	8,5	5,47	11,6	17,9	

Активность спермы быков во всех группах, как и в первом научно-хозяйственном опыте, также находилась в практически в одинаковых пределах.

Отмечалось достоверное превосходство у животных 3-й и 4-й опытных групп по таким показателям, как концентрация спермиев в эякуляте – соответственно на 9.2% (P<0,05) и 8.4% (P<0,05), количество спермиев в эякуляте – на 15.2% (P<0,01) и 13.7% (P<0,01) по сравнению с быками 1-й контрольной группы.

За второй опыт от производителей 2-й, 3-й и 4-й групп было получено большее количество эякулятов по сравнению с 1-й группой (таблица 4).

Таблица 4 – Количественные показатели спермопродукции и оплодотворяющая способность спермы быков при использовании продукта сорбирующего «Селтоксорб»

	Группа			
Признаки	1-я —	2-я —	3-я –	4-я –
	контрольная	опытная	опытная	опытная
Получено эякулятов за	325	331	343	338
опытный период, шт.	323	331	343	330
Брак эякулятов, %	10,7	9,6	8,4	9,2
Накоплено спермодоз, ед.	39064	40402	40663	40724
Брак спермодоз, %	2,9	2,2	1,7	2,0
Оплодотворяющая способность спермы, %	72,9	75,6	78,8	78,1

У быков-производителей 3-й группы процент брака эякулятов был ниже на 2,3 п.п., у быков 2-й группы – на 1,1 п.п. и у животных 4-й группы – на 1,5 процентных пункта по сравнению с аналогами контрольной группы. От животных 2-й, 3-й и 4-й групп было заморожено больше спермодоз по сравнению с 1-й группой. Процент брака спермодоз по переживаемости у быков опытных групп был ниже соответственно на 0,3-1,2 процентных пункта по сравнению со сверстниками контрольной группы. Оплодотворяющая способность спермы у быков 3-й группы была выше на 5,9 п.п., у производителей 2-й и 4-й групп – соответственно на 2,7 и 5,2 процентных пункта по сравнению с быками 1-й группы.

Для оценки закрепления полученных результатов проследили динамику показателей спермопродукции в течение двухмесячного периода после окончания каждого эксперимента. В постопытный период просматривалась та же закономерность, что и в опытный период, а именно, наиболее высокие показатели спермопродукции были у быков-производителей 3-й группы.

Заключение. 1. Экспериментально установлена адсорбционная способность кормовой добавки «Витасорб» и продукта сорбирующего «Селтоксорб» в отношении к микотоксинам на уровне 31,5-100%.

2. Использование кормовой добавки «Витасорб» и продукта сорбирующего «Селтоксорб» в количестве 0,15% от массы комбикорма в кормлении быков-производителей позволяет повысить объем эякулята соответственно на 5,2 и 5,3%, концентрацию спермиев – на 7,8 (P<0,05) и 9,2% (P<0,05), количество спермиев в эякуляте – на 13,4 (P<0,05) и 15,2% (P<0,01), оплодотворяющую способность спермы – на 4,2 и 5,9 п.п. и снизить брак спермодоз на 0,7 и 1,2 процентных пункта.

Литература. 1. Ахмадышин, Р. А. Применение адсорбентов микотоксинов в животноводстве и птицеводстве / Р. А. Ахмадышин // Ветеринарный врач. – 2006. – № 1. – С. 64-65. 2. Базылев, Д. В. Применение кормовой добавки «Витасорб» в рационах быков-производителей : рекомендации / Д. В. Базылев, М. М. Карпеня, И. Н. Дубина. – Витебск : ВГАВМ, 2013. – 20 с. 3. Влияние влажности хранящегося зернофуража на его санитарное состояние / А. А. Хоченков [и др.] // Ученые записки учреждения образования «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины». – Витебск, 1999. – Т. 35, ч. 2. – С. 202-203. 4. Лемиш, А. Микотоксины в кормах для животных на территории Республики Беларусь / А. Лемиш, М. Сергеева // Ветеринарное дело. – 2016. – № 7 (61). – С. 34-37. 5. Карпеня, М. М. Использование продукта сорбирующего «Селтоксорб» в рационах быков-производителей : рекомендации / М. М. Карпеня, Д. В. Базылев. — Витебск : ВГАВМ, 2016. – 20 с. 6. Кошелева, Г. Проблема санитарно-токсикологической чистоты кормов и пути ее решения / Г. Кошелева // Животноводство для всех. — 2002. — № 11. — С. 8-11. 7. Природный минеральный сорбент экос для коров и телят / А. А. Шапошников [и др.] // Зоотехния. — 2003. — № 2. — С. 15-17. 8. Рябчик, И. Профилактика хронических микотоксикозов / И. Рябчик // Птицеводство. – 2009. – № 4. – С. 45–47. 9. Хоченков, А. А. Микотоксическая загрязненность комбикормов для свиней в Беларуси / А. А. Хоченков // Научные проблемы производства продукции животноводства и улучшения ее качества : сборник научных трудов Международной научно-практической конференции, Брянск, 23-24 июня 2010 г. – Брянск, 2010. – С. 186-189. 10. Шешко, П. М. Микотоксины и проблемы контроля качества кормов / П. М. Шешко // Ветеринарная медицина Беларуси. – 2003. – № 1. – С. 28-30.

Статья передана в печать 19.06.2018 г.

УДК 636.2.:612.332.7

ПУТИ ВСАСЫВАНИЯ ЦИНКА В СОЛЕВОЙ И ХЕЛАТНОЙ ФОРМАХ В КИШЕЧНИКЕ КРУПНОГО РОГАТОГО СКОТА

Ковалёнок Ю.К., Ковалёнок Н.П.

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Цель работы состояла в определении фундаментальных истоков значимых различий всасываемости цинка в кишечнике крупного рогатого скота в солевой и хелатной формах. Установлено, что всасываемость солевых форм цинка реализуется преимущественно по трансцеллюлярному пути, главным образом за счет