ступления эндогенных элементов/ Ю. К. Ковалёнок // Ветеринария. – 2011. – № 5. – С. 46-48. 7. Калашников, В. В. Содержание макро- и микроэлементов в конском волосе как характеристика элементного статуса лошадей заводских и локальных пород в разных регионах России / В. В. Калашников, В. А. Багиров, А. М. Зайцев, Л. В. Калинкова, Т. В. Калашникова, Н. В. Блохина, М. М. Атрощенко, О. А. Завьялов, А. Н. Фролов, С. А. Мирошников // С.-х. биология. – 2017. – Т. 52, № 6. – С. 1234-1243. 8. Калашников, В. В. Интервальная харрактеристика концентрации химических элементов в волосах лошадей. / В. В. Калашников, А. М. Зайцев, Т. В. Калашникова, Н. В. Блохина // Коневодство и конный спорт. – 2018. - № 2. С. 35-36. 9. Калашников, В. В. Концентрации токсичных элементов в волосах лошадей из различных регионов РФ / В. В. Калашников, А. М. Зайцев, Л. В. Калинкова, Т. В. Калашникова, Н. В. Блохина, М. М. Атрощенко, О. А. Завьялов, А. Н. Фролов, С. А. Мирошников // Коневодство и конный спорт. – 2017. - № 6. – С. 20-23. 10. Калашников, В. В. Особенности содержания химических элементов в волосах гривы лошадей разной масти / В. В. Калашников, А. М. Зайцев, Т. В. Калашникова, Н. В. Блохина // Коневодство и конный спорт. – 2018. - №3. – С. 36-37. 11. Калашников, В. В. Особенности содержания химических элементов в волосах гривы жеребцов и кобыл / В. В. Калашников, А. М. Зайцев, Т. В. Калашникова, Н. В. Блохина // Коневодство и конный спорт. – 2018. - № 3. – С. 38-39. 12. Скальный, А. В. Референтные значения концентрации химических элементов в волосах, полученные методом ИСПАЭС / А. В. Скальный // Микроэлементы в медицине. 2003. 1: 55-56. 13. Asano, R. Concentrations of toxic metals and essential minerals in the mane hair of healthy racing horses and their relation to age / Asano R., Suzuki K., Otsuka T., Otsuka M., Sakurai H. // J Vet Med Sci. 2002; 64(7):607-10.

Статья передана в печать 03.10.2018 г.

УДК 636.2.082.31

ОСОБЕННОСТИ ОБМЕНА ВЕЩЕСТВ У БЫЧКОВ ПРИ ИСПОЛЬЗОВАНИИ В РАЦИОНАХ НОВЫХ НОРМ ВИТАМИНОВ И МИКРОЭЛЕМЕНТОВ

Карпеня М.М.

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

Экспериментально установлена эффективность применения новых норм витаминов и микроэлементов в оптимизации обмена веществ у бычков, на что указывает повышение переваримости сухого вещества корма, протеина, количества азота в рубцовой жидкости, летучих жирных кислот, отложение в теле и использование азота, усвоение минеральных веществ, витаминов и улучшение состава крови. **Ключевые слова:** бычки, витамины, микроэлементы, обмен веществ, переваримость, рубцовое пищеварение, баланс веществ, кровь.

FEATURES OF THE METABOLISM AT BULL-CALVES WHEN USING IN DIETS NEW NORMS OF VITAMINS AND MICROELEMENTS

Karpenia M.M.

Vitebsk State Academy of Veterinary Medicine, Vitebsk, Republic of Belarus

The efficiency of use of new norms of vitamins and microelements in optimization of a metabolism at bull-calves is experimentally established on what specifies increase in digestibility of dry matter of a forage, protein, amount of nitrogen in cicatricial liquid, volatile fatty acids, adjournment in a body and nitrogen use, digestion of mineral substances, vitamins and improvement of composition of blood. **Keywords:** bull-calves, vitamins, microelements, metabolism, digestibility, cicatricial digestion, balance of substances, blood.

Введение. Выращивание, оценка и отбор бычков на племя имеет исключительно важное значение для скотоводства Республики Беларусь. Систематическое приобретение бычков в других странах мира довольно ограничено из-за высоких цен, а по ряду причин и нецелесообразно [1, с. 106]. Как отмечают В.Н. Тимошенко с соавторами [9], многолетний опыт завоза импортного скота в Республику Беларусь для товарного производства не увенчался успехом. Племенной скот необходимо завозить только для селекционных целей.

Биологическая полноценность питания крупного рогатого скота обусловлена как удовлетворением его потребности в энергии, необходимых питательных веществах, так и в витаминах и микроэлементах. Расширение представлений о потребностях животных и физиологической роли биологически активных веществ в организме вызывает необходимость уточнения норм использования в рационах жвачных при организации их питания [11, с. 154–161].

Кормление сельскохозяйственных животных по используемым в настоящее время нормам (РАСХН, 2003) [5] не всегда обеспечивает физиологические потребности животных. По отдельным показателям они требуют дальнейшего совершенствования и уточнения [2]. Прежде всего, это касается изучения потребности и обеспеченности племенных животных в энергии, протеине, макро- и микроэлементах, других биологически активных веществах.

Для жвачных животных переваривание и использование питательных веществ корма определяется состоянием рубцового пищеварения. Оптимальная жизнедеятельность микро-

флоры рубца, при прочих нормальных условиях, обеспечивается только в том случае, когда с кормами рациона поступает в организм достаточное количество биологически активных веществ и в определенном их соотношении. Недостаток или избыток какого-либо минерального элемента в рационе приводит к нарушению баланса питательных и минеральных веществ, вследствие чего общее направление обменных процессов изменяется в худшую сторону [8, 12].

В научно-хозяйственном опыте на молодняке крупного рогатого скота изучено влияние скармливания минерального и минерально-витаминного премикса на рост, развитие и обмен веществ. Установлено, что телята из опытных групп по среднесуточному приросту живой массы превосходили сверстников из контрольной группы на 10,3–16,3%, при этом затраты корма на 1 кг прироста сократились на 0,71 кормовую единицу [6].

Цель исследований – установить особенности обмена веществ у бычков при использовании в рационах новых норм витаминов и микроэлементов.

Материалы и методы исследований. В ранее проведенных научно-хозяйственных опытах были разработаны и экспериментально обоснованы новые нормы потребности племенных бычков в витаминах и микроэлементах [4]. Но для более детальной оценки эффективности разработанных норм был проведен физиологический опыт в РУП «Научнопрактический центр Национальной академии наук Беларуси по животноводству» на бычках черно-пестрой породы с хронической фистулой на рубце. Были отобраны 2 группы бычков (контрольная и опытная) по 3 головы в каждой в возрасте 6 месяцев, живой массой 170–175 кг. Продолжительность физиологического опыта составляла 7 дней. Условия содержания подопытных бычков при проведении эксперимента были одинаковыми. При проведении физиологического опыта в состав рациона для бычков вводили силос кукурузный (52,3%) и комбикорм КДК-60 (47,8%). Дополнительно в рацион вводили витамины А, D и Е и микроэлементы Cu, Zn, Mn, I, Co и Se. Бычки контрольной группы дополнительно получали витамины и микроэлементы по нормам РАСХН (2003) [5], животные опытной группы – по разработанным нами нормам: меди – 12 мг, цинка – 70, кобальта – 0,9, марганца – 80, йода – 0,6, каротина – 37 мг, витамина D – 1,8 тыс. МЕ, витамина E – 60 мг на 1 кг сухого вещества рациона.

Химический состав кормов и продуктов обмена определяли по схеме общего зоотехнического анализа. Проводили контроль поедаемости кормов путем ежедневных контрольных взвешиваний заданных кормов и их остатков. При проведении физиологических опытов отбор проб выделений (кал и моча) для лабораторных исследований осуществляли по методике ВИЖ (1969). Переваримость и использование питательных веществ, микроэлементов и витаминов определяли по разнице между их количеством, поступившим с кормом и выделенным с продуктами обмена.

Для контроля за процессами пищеварения в преджелудках проводили анализ содержимого рубца, пробы которого у бычков отбирали спустя 2,5–3 часа после утреннего кормления через фистулы, установленные в рубце. В отобранных пробах (профильтрованных через 4 слоя марли) определяли: концентрацию ионов водорода — электропотенциометром рН-340, общий азот — методом Къендаля, аммиак — микродиффузным методом в чашках Конвея, общее количество ЛЖК — методом паровой дистилляции в аппарате Маркгамма.

Морфологические показатели крови определяли на анализаторе клеток «Medonic CA 620». Биохимические исследования проводили с помощью анализатора клеток «Cormay Lumen». Минеральный состав крови подопытных животных изучали на атомно-абсорбционном спектрофотометре AAS-3; кальций – по де-Ваарду; неорганический фосфор – по Бригсу в модификации Р.Я. Юдиловича; глюкозу – способом Хенгедорна и Иенсена; калий – по Крамеру Тисдалю; содержание витаминов А и Е – флюориметрическим методом (флюорат М-02). Кровь у всех бычков брали в конце эксперимента. В одной из пробирок кровь стабилизировали трилоном Б (2,0–2,5 ед./мл), а вторую использовали для получения сыворотки.

Цифровой материал обработан методом биометрической статистики с определением уровня значимости: * - P<0,05; ** - P<0,01; *** - P<0,001.

Результаты исследований. Переваримость питательных веществ является основным показателем, который определяет продуктивное действие рациона. На основании полученных данных о потреблении кормов рациона и выделении продуктов обмена определены коэффициенты переваримости питательных веществ (таблица 1).

Таблица 1 – Переваримость питательных веществ рациона, %

Показатели	Группы	
	контрольная	опытная
Сухое вещество	58,06±1,63	61,34±2,22*
Органическое вещество	62,03±1,47	64,08±1,24
БЭВ	68,45±2,70	72,38±2,83
Жир	58,77±4,52	62,93±3,61
Протеин	54,58±1,68	58,65±1,34*
Клетчатка	58,70±2,86	60,73±1,79

Установлено, что коэффициенты переваримости питательных веществ у подопытных бычков имели некоторые межгрупповые отличия. Так, переваримость сухого вещества в опытной группе оказалось выше на 3,28 п.п. (Р<0,05). По переваримости органического вещества, БЭВ, жира и клетчатки просматривалась положительная тенденция у бычков опытной группы по сравнению с контрольной группой. Следует отметить достоверное превосходство молодняка опытной группы над сверстниками контрольной группы по переваримости протеина на 4,07 п.п.

Весьма существенна роль микроэлементов в пищеварении жвачных животных, поскольку они оказывают непосредственное воздействие на функциональную активность микрофлоры рубца. Результаты наших исследований показали, что у бычков опытной группы наблюдалось снижение величины рН рубцового содержимого с 6,55 до 6,36, или на 3% по сравнению с контролем (таблица 2). При этом в опытной группе отмечалось достоверное повышение концентрации летучих жирных кислот на 10,8% (P<0,05) по сравнению с контрольной группой. Известно, что величина рН рубцового содержимого зависит от концентрации летучих жирных кислот (уксусной, пропионовой, масляной) [7, с. 39]. При обычных условиях сено-концентратного кормления жвачных животных в рубце находят в среднем 60–65% уксусной кислоты, 20–25% пропионовой и 5–13% масляной кислоты [10, с. 27].

Таблица 2 – Показатели рубцового пишеварения у бычков

Показатели	Группы		
	контрольная	опытная	
pH	6,55±0,25	6,36±0,31	
Азот, %	0,125±0,01	0,143±0,02*	
Аммиак, мг %	15,39±2,9	13,11±2,3	
ЛЖК, ммоль/л	93±3,6	103±2,9*	

В содержимом рубца бычков опытной группы концентрация азота была выше на 0,018 п.п. при достоверной разнице (P<0,05) по сравнению с молодняком контрольной группы. Общеизвестно, что содержание в рубцовой жидкости аммиака указывает на расщепляемость протеина. В исследованиях установлено снижение уровня аммиака у животных опытной группы на 17,4% по сравнению с бычками контрольной группы, что свидетельствует о снижении расщепляемости протеина и улучшении его использования микроорганизмами для синтеза белка в организме [3].

Как отмечает в своих научных работах В.Ф. Радчиков [7, с. 44], изучение баланса азота, кальция и фосфора в организме животных и использование питательных веществ рациона так же важно, как и определение их переваримости. Высокая переваримость питательных веществ не всегда гарантирует хорошее их использование.

Анализ баланса азота в нашем эксперименте был положительным у бычков опытной группы (таблица 3). Поступление азота в организм у животных этой группы было выше в связи с тем, что они съедали большее количество силоса. Установлено, что бычки опытной группы выделяли азота с калом меньше на 1,7 г, или на 3,5%, чем сверстники контрольной группы, хотя разница была статистически не достоверной.

Таблица 3 – Среднесуточный баланс и использование азота

Показатели	Группы	
	контрольная	опытная
Принято с кормом, г	116,5±1,82	117,9±2,01
Выделено с калом, г	48,9±1,54	47,2±1,67
Усвоено, г	67,6±1,25	70,7±1,23
Выделено с мочой, г	43,1±1,21	42,4±1,30
Отложено в теле, г	24,5±1,38	28,3±0,97*
Использовано от принятого, %	21,0	24,0
Использовано от усвоенного, %	36,2	40,0

Увеличение поступления азота с кормом и меньшее выделение с калом позволило повысить его усвоение молодняком опытной группы на 3,1 г, или на 4,6%, по сравнению с бычками контрольной группы. Выделение азота с мочой у бычков обеих групп было почти одинаковым. В результате у бычков опытной группы было больше отложено азота на 3,8 г, или на 15,5% (P<0,05), по сравнению с аналогами контрольной группы. Следует отметить, что у животных опытной группы было использовано больше азота от принятого на 3,0 п.п., а от усвоенного - на 3,8 п.п., чем у сверстников контрольной группы.

При изучении среднесуточного баланса макроэлементов было установлено, что при практически одинаковом поступлении в организм и выделении с калом и мочой кальция и фосфора, у бычков опытной группы их отложение в теле было выше соответственно на 0,5 и 0,4 г, а использовано от принятого — на 1,0 и 1,5 п.п. по сравнению с животными контрольной группы.

По балансу микроэлементов отмечаются определенные различия, что связано с более высоким поступлением этих элементов в организм бычков опытной группы. Так, бычками

опытной группы, по сравнению с контрольной группой, было потреблено на 25% больше меди, при этом ее больше выделено с калом и мочой, но и отложено в теле на 5,6 мг (P<0,01) больше, а использовано организмом от принятого количества — на 4,2 п.п. Такая же закономерность прослеживается по балансу цинка и кобальта, которых было отложено в организме бычков опытной группы соответственно на 84 мг (P<0,001) и 0,56 мг (P<0,05), а использовано — на 5,2 и 3,5 п.п. больше, чем у бычков контрольной группы. В нашем балансовом опыте установлена невысокая усвояемость марганца на уровне 12,8—14,2%, причем разница между контрольной и опытной группой составила 1,4 п.п. При изучение баланса йода установлено, что его отложение в теле бычков опытной группы было более чем 2 раза (P<0,01) выше по сравнению с аналогами контрольной группы, а процент использования был выше на 3,7 п.п. Хотелось бы отметить, что выделение йода с мочой у бычков обеих групп было на уровне 32% от всех выделений, а по другим микроэлементам, кроме селена, — от 3,5 до 8,0%.

Отдельной интерпретации требует баланс селена. В связи с тем, что бычки опытной группы получали повышенную дозу селена в органической форме, это поспособствовало более высокому отложению его в теле животных и использованию (усвоению) в 1,9 раза (P<0,001) больше, чем у сверстников контрольной группы, в рационе которых применяли неорганическую форму селена. Общеизвестно, что хелатные соединения микроэлементов усваиваются в 1,5–2 раза больше, чем неорганические соли.

Наиболее высокий уровень использования витаминов был установлен у бычков опытной группы по сравнению с контрольной. Так, при более высоком поступлении в организм животных витаминов A, D и E, отложение их в теле было выше почти в 2 раза (P<0,01–0,001), хотя с калом и мочой выделялось также больше. Бычками опытной группы было использовано витамина A на 5,2 п.п. больше, витамина D – на 4,8 и витамина E – на 4,4 процентных пункта, чем аналогами контрольной группы.

Исследования состава крови подопытных бычков показали, что введение повышенных доз витаминов и микроэлементов в их рацион оказывает положительное влияние на гематологические показатели. Так, в крови бычков опытной группы просматривалась тенденция к повышению гемоглобина, эритроцитов и снижению лейкоцитов. Важным показателем полноценного и сбалансированного кормления является резервная щелочность, выполняющая роль буфера крови. В нашем эксперименте резервная щелочность крови была выше у бычков опытной группы на 3,3% по сравнению с аналогами контрольной группы, хотя разница была статистически не достоверной. Следует отметить достоверное увеличение общего белка в крови бычков опытной группы на 4,9% (P<0,05) по сравнению с аналогами контрольной группы, что, на наш взгляд, позволяет судить о лучшем его усвоении и использовании благодаря активности микроэлементов и витаминов. Прослеживалась тенденция к снижению мочевины и повышению уровня глюкозы в крови бычков опытной группы.

Наиболее важными показателями в наших исследованиях были концентрации в крови бычков витаминов и микроэлементов. Отмечено, что животные опытной группы превосходили аналогов контрольной группы по содержанию в крови витамина А на 7,9% (P<0,001), витамина D – на 16,7 (P<0,05), витамина E – на 10,5 (P<0,001), цинка – на 12,1 (P<0,05), меди – на 11,2 (P<0,05), марганца – на 8,0 (P<0,05) и селена – на 16,5% (P<0,001). Мы связываем достоверное увеличение в крови быков витаминов и микроэлементов с дополнительным введением их в состав рациона по разработанным нормам.

Заключение. Установлена эффективность применения новых норм витаминов и микроэлементов в оптимизации обмена веществ у бычков, на что указывает повышение переваримости сухого вещества корма на 3,28 п.п. (P<0,05), протеина – на 4,07 (P<0,05), количества азота в рубцовой жидкости – на 0,018 п.п. (P<0,05), летучих жирных кислот – на 10,8% (P<0,05), отложение в теле азота – на 15,5% (P<0,05) и его использование организмом бычков – на 3,0 п.п., усвоение минеральных веществ – на 1,0–5,2 п.п., органического селена – в 1,9 раза, жирорастворимых витаминов – на 4,4–5,2 процентных пункта и улучшение состава крови.

Литература. 1. Выращивание молодняка крупного рогатого скота: монография / В. И. Шляхтунов [и др.]. — Витебск: УО ВГАВМ, 2005. — 184 с. 2. Горячев, И. И. Оптимизация витаминноминерального питания высокопродуктивного молочного скота: дис. ... д-ра с.-х. наук в форме науч. докл. / И. И. Горячев; БелНИИ животноводства. — Жодино, 1992. — 66 с. 3. Гурин, В. К. Конверсия корма племенными бычками в продукцию при скармливании рационов с разным качеством протеина / В. К. Гурин [и др.] // Зоотехническая наука Беларуси: сб. науч. тр. / НПЦ НАН Беларуси по животноводству; ред. И. П. Шейко [и др.]. — Жодино, 2016. — Т. 51, ч. 1. — С. 257—266. 4. Нормирование витаминноминерального питания молочного скота: справочное пособие / И. И. Горячев [и др.]. — Витебск: ВГАВМ, 2015. — 33 с. 5. Нормы и рационы кормления сельскохозяйственных животных: справ. пособие / А. П. Калашников [и др.]. — М., 2003. — 456 с. 6. Плавинский, С. Влияние скармливания минеральновитаминного премикса на рост и развитие телят / С. Плавинский, Т. Краснощекова // Молочное и мясное скотоводство. — 2009. — № 3. — С. 21—22. 7. Радчиков, В. Ф. Нормирование рационов молодняка крупного рогатого скота по селену: монография. / В. Ф. Радчиков. — Жодино: РУП «НПЦ НАН Беларуси по животноводству», 2008. — 121 с. 8. Слесарев, И. К. Минеральное питание крупного рогатого скота / И. К. Слесарев, А. С. Зеньков. — Минск: Ураджай, 1987. — С. 51—63. 9. Тимошенко, В. Н. Перспективы раз-

вития молочного скотоводства в Республике Беларусь / В. Н. Тимошенко, А. А. Музыка, А. А. Москалев // Передовые технологии и техническое обеспечение сельскохозяйственного производства : материалы Междунар. науч.-практ. конф., Минск, 30-31 марта 2017 г. — Минск : БГАТУ, 2017. — С. 15—20. 10. Физиология пищеварения и кормление крупного рогатого скота : учеб. пособие / В. М. Голушко [и др.]. — Гродно : ГГАУ, 2005. — 443 с. 11. Хазиахметов, Ф. С. Нормированное кормление сельскохозяйственных животных : учеб. пособие / Ф. С. Хазиахметов [и др.]. — СПб. : Лань, 2005. — 272 с. 12. Аттетап, С. В. Biological availability of mintor mineralions: a review / С. В. Аттетап, S. М. Miller // J. Anim. Sci. — 1982. — Vol. 35. — Р. 681—694.

Статья передана в печать 15.10.2018 г.

УДК 636.2.082.31

ПЕРЕВАРИМОСТЬ ПИТАТЕЛЬНЫХ ВЕЩЕСТВ, РУБЦОВОЕ ПИЩЕВАРЕНИЕ, БАЛАНС И ИСПОЛЬЗОВАНИЕ АЗОТА БЫЧКАМИ ПРИ ВКЛЮЧЕНИИ В РАЦИОН НОВЫХ НОРМ ВИТАМИНОВ И МИКРОЭЛЕМЕНТОВ

Карпеня М.М.

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины», г. Витебск, Республика Беларусь

В результате физиологического опыта установлено, что включение в рацион бычков витаминов и микроэлементов по новым нормам позволяет оптимизировать обмен веществ, минеральных элементов и витаминов, о чем свидетельствует повышение переваримости безазотистых экстрактивных веществ, увеличение в рубцовом содержимом азота и летучих жирных кислот, отложение в теле азота, использование минеральных веществ, органического селена и витаминов. Ключевые слова: быкипроизводители, витамины, микроэлементы, переваримость, рубцовое пищеварение, баланс веществ.

DIGESTIBILITY OF NUTRIENTS, CICATRICIAL DIGESTION, BALANCE AND NITROGEN USE BY BULL-CALVES AT INCLUSION IN THE DIET OF NEW NORMS VITAMINS AND MICROELEMENTS

Karpenia M.M.

Vitebsk State Academy of Veterinary Medicine, Vitebsk, Republic of Belarus

As a result of physiological experience it is established that inclusion of vitamins and microelements in new norms in a diet of bulls-calves allows to optimize a metabolism, mineral elements and vitamins what increase in digestibility of nitrogen-free extractive substances, increase in cicatricial contents of nitrogen and volatile fatty acids, adjournment in a body of nitrogen, use of mineral substances, organic selenium and vitamins. **Keywords:** manufacturing bulls, vitamins, microelements, digestibility, cicatricial digestion, balance of substances.

Введение. Необходимым условием повышения эффективности племенной работы в Республике Беларусь, ускорения темпов роста генетического потенциала продуктивности крупного рогатого скота и правильного использования племенных ресурсов является создание специализированной системы выращивания и использования племенных быков [227, с. 5]. Продолжительность использования ценных быков-производителей, количество и качество полученной от них спермы зависят как от особенностей, так и от условий их выращивания и полноценности кормления [2, с. 164–165].

Наряду с удовлетворением потребности в энергии и необходимых питательных веществах существенное влияние оказывает обеспеченность их витаминами и минеральными веществами. При этом трансформация питательных веществ и энергии кормов полностью осуществляется при оптимальном их соотношении и своевременном поступлении в организм животных. На продуктивность крупного рогатого скота обменная энергия влияет на 55%, протеин — на 30, минеральные вещества и витамины — на 15% [6, 10].

Основным источником важнейших минеральных веществ и витаминов для животных являются растительные корма. Однако минеральный состав кормов существенно отличается не только по биохимическим зонам страны, но и по районам республики. В исследованиях И.И. Горячева [4] средний дефицит микроэлементов в сбалансированных по энергии рационах составляет 30–50%, что вызывает необходимость применения минеральных подкормок в рационах животных. В Витебской области Республики Беларусь преобладают дерновые и дерново-подзолистые почвы, на их долю приходится около 80% всех площадей. По физическим свойствам это суглинистые или супесчаные почвы, которые имеют кислотность рН 4,8–5,3, что препятствует переходу минеральных веществ в растения [1, 5, 8].

Интенсивность и направленность бродильных процессов, осуществляемых микрофлорой преджелудков, обусловливает характер переваривания корма и эффективность его использования организмом животных. Регуляция этих процессов в рубце жвачных животных может осу-