протеина растительных кормов для жвачных животных: методические рекомендации / сост.: А. И. Фицев [и др.]; ВАСХНИЛ. — Москва, 1985. — 8 с. 3. Фицев, А. И. Новая система оценки качества протеина кормов для жвачных животных / А. И. Фицев // Современные вопросы интенсификации кормления, содержания животных и улучшения качества продуктов животноводства. — М., 1999. — С. 18-19. 4. Гибадуллина, Ф. С. Повышение эффективности использования протеина в рационах лактирующих коров / Ф. С. Гибадуллина // Кормопроизводство. — 2006. — № 8. — С. 30-31. 5. Левахин, Г. И. Влияние энергетической ценности рациона на использование протеина бычками / Г. И. Левахин, А. Г. Мещеряков // Животноводство России. — 2006. — № 5. — С. 10-13. 6. Галочкина, В. П. Влияние кормов с низкой распадаемостью протеина в рубце на продуктивность откармливаемых бычков / В. П. Галочкина // Животноводство России. — 2004. — № 2. — С. 12-14. 7. Погосян, Д. Г. Переваримость нерасщепляемого в кубце протеина различных кормов в кишечнике растущих бычков : автореф. дисс. ... канд. с.-х. наук : 06.02.02 / Погосян Д.Г. — Оренбург, 1994. — 41 с. 8. Рубенштеин, Г. И. Влияние денатурирующих протеин веществ на пищеварительные процессы и продуктивность молодняка крупного рогатого скота : дисс. ... канд. с.-х. наук : 03.00.13 / Рубенштейн Г.И. — Жодино, 1988. — 147 с. 9. Бон∂арь, Ю. В. Влияние рациона с разным качеством протеина на процессы рубцового пищеварения и эффективность использования питательных веществ бычками-кастратами при интенсивном выращивании : автореф. дисс. ... канд. биол. наук : 06.02.02 / Бондарь Ю.В. — Оренбург, 2000. — 22 с.

УДК 636.2.086.1:612.015.3

ВЛИЯНИЕ ВЛАЖНОГО ЗЕРНА, ЗАГОТОВЛЕННОГО С КОНСЕРВАНТАМИ «КОРМОПЛЮС», НА ПЕРЕВАРИМОСТЬ И ИСПОЛЬЗОВАНИЕ ПИТАТЕЛЬНЫХ ВЕЩЕСТВ БЫЧКАМИ НА ОТКОРМЕ

Козинец А.И., Кот А.Н., Акулич В.И., Радчикова Г.Н., Гурин В.К.

РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству», г. Жодино, Республика Беларусь

Использование в кормлении молодняка крупного рогатого скота на откорме плющенного и консервированного зерна оказывает положительное влияние на физиологическое состояние и переваримость питательных веществ, и способствует повышению использования азота животными на 7,0 и 1,6%.

Usage of wet grain preserved with Kormoplus for young cattle fattening has a positive effect on physiological condition and digestibility of nutrients and promotes nitrogen usage by animals that increases at 7,0 and 1,6%.

Введение. Химические вещества, используемые при консервировании кормов, должны отвечать определенным физико-химическим, биологическим и экономическим требованиям: они должны быстро прекращать деятельность ферментов и микробиологические процессы, хорошо сохранять и при возможности повышать питательную ценность кормов, не быть токсичными в получаемом корме, растворяться в воде, а также быть экономически эффективными и удобными для практического применения.

При консервировании влажного зерна в настоящее время используют импортные консерванты, состоящие в основном из органических кислот (рготуг, AIV, аммофор). Основными действующими веществами этих консервантов являются муравьиная и пропионовая кислоты, которые в настоящее время имеют высокую цену, в зависимости от количества кислот, входящих в их состав.

Исследованиями многих авторов доказано, что органические кислоты являются не единственными составляющими консервантов. В связи с этим перед животноводческой отраслью сельского хозяйства поставлена цель — изыскивать экономически выгодные и обладающие хорошими консервирующими качествами препараты для влажного зерна [1-9].

Целью работы явилось изучение влияния использования в рационах молодняка крупного рогатого скота влажного плющеного зерна, заготовленного с использованием новых консервантов кормоплюс-1 и кормоплюс-2, на физиологическое состояние животных и обмен веществ.

Материалы и методы. Исследования проведены в физиологическом корпусе РУП «Научно-практический центр НАН Беларуси по животноводству» по схеме, представленной в таблице 1. В качестве опытных консервантов были использованы препараты кормоплюс-1 (уксусная кислота — 30%, уротропин — 30%, вода — 40%) и кормоплюс-2 (уксусная кислота — 6%, ацетат натрия — 25%, уротропин — 25%, вода — 44%), представляющие собой бесцветные прозрачные жидкости без механических примесей. В контрольном варианте использовался химический консервант AIV 2000, представляющий собой смесь муравьиной кислоты — 55%, пропионовой кислоты — 5%, формиата аммония — 24%, эфиров бензойной кислоты — 1%, бензойной кислоты — 1%.

При проведении физиологических исследований условия содержания животных были одинаковыми. В опыте изучались следующие показатели:

- потребление кормов по данным учета заданных кормов и их остатков ежедневно;
- процессы рубцового пищеварения. Взятие рубцового содержимого у животных проводили спустя 2-2,5 часа после утреннего кормления через хронические фистулы рубца с помощью кронцанга. В жидкой части определяли: величину рН электропотенциометром рН-340; общий азот по Къельдалю; аммиак микродиффузным методом в чашках Конвея; общее количество летучих жирных кислот (ЛЖК) в аппарате Маркгамма с последующим титрованием 0,1 N раствором NaOH;
- морфобиохимический состав крови путем взятия крови из яремной вены через 2,5-3 часа после утреннего кормления один раз в конце опыта.

Анализы кормов и продуктов обмена физиологических исследований проведены в отделе качества продуктов животноводства и кормов по общепринятым методикам зоотехнического анализа (Лебедев П.Т., Усович А.Т., 1976).

Цифровой материал научно-хозяйственных исследований обработан методом вариационной статистики (П.Ф. Рокицкий, 1973).

Таблица 1 - Схема опыта

Группы	Продолжительность опыта, дней.	Особенности кормления
I контрольная	30	Основной рацион (OP) + влажное плющеное зерно кукурузы, консервированное AIV 2000
II опытная	30	OP + плющеное зерно кукурузы, консервированное препаратом кормоплюс - 1
III опытная	30	OP + плющеное зерно кукурузы, консервированное препаратом кормоплюс - 2

Результаты исследований. Согласно схеме кормления животные контрольной группы получали силос кукурузный (по поедаемости) и концентраты, в состав которых вводили 1 кг комбикорма и 1,5 кг влажной плющеной кукурузы, консервированной AIV 2000. Бычкам опытных групп с концентратной частью рациона скармливали аналогичное количество комбикорма и 1,5 кг плющеного зерна кукурузы, консервированного кормоплюс-1 (II группа) и кормоплюс-2 (III группа).

Изучение процессов пищеварения и обмена веществ выявило некоторые различия в рубцовом метаболизме у животных контрольной и опытных групп (табл. 2).

Установлено, что все изучаемые показатели у бычков находились в пределах физиологических норм. По содержанию общего азота в рубцовой жидкости контрольные животные превосходили молодняк II опытной группы на 4,6%, однако его уровень, по сравнению с бычками III опытной группы, потреблявшими кукурузу, консервированную кормоплюс-2, оказался на 10,7% ниже. Отмечено снижение концентрации летучих жирных кислот у молодняка опытных групп на 15,4% в обоих случаях, по сравнению с контрольными животными, полу навшими зерно с консервантом AIV 2000.

Таблица 2 – Показатели пищеварения в рубце у подопытных животных

Показатели	Группы			
	I	li li	111	
PH	6,7	7,2	7,0	
Общий азот, мг%	250	239	280	
ЛЖК, ммоль/100 мл	12,3	10,4	10,4	
Аммиак, мг%	12,2	10,0	11,3	

Использование в рационах опытных групп плющеного зерна кукурузы, консервированного кормоплюс-1 и кормоплюс-2, способствовало снижению концентрации аммиака — конечного продукта расщепления белковых и небелковых азотистых веществ корма на 18,0 и 7,4%, соответственно.

В результате проведенных исследований по переваримости питательных веществ установлено, что введение в рационы опытных животных с концентратной частью влажного плющеного зерна кукурузы, консервированного кормоплюс-1 и кормоплюс-2, не оказало отрицательного влияния на интенсивность пищеварительных процессов в организме молодняка крупного рогатого скота (табл. 3).

Таблица 3 - Коэффициенты переваримости питательных веществ

Показатели	Группы			
показатели	1	II		
Сухое вещество	59,8±1,9	59,6±1,1	59,7±3,5	
Органическое вещество	61,9±1,8	62,9±0,2	61,6±3,2	
Жир	67,2±3,5	63,4±9,6	67,5±3,8	
Протеин	61,8±2,5	62,2±4,5	62,1±5,8	
БЭВ	62,9±1,7	66,8±1,1	64,0±4,1	
Клетчатка	53,0±2,2	54,9±1,6	50,4±4,6	

Использование в составе концентратной части рациона кукурузы, консервированной кормоплюс-1, способствовало повышению переваримости органического вещества на 1,0%, БЭВ — 3,9 и клетчатки на 1,9% на фоне снижения переваримости жира на 3,8% по сравнению с молодняком крупного рогатого скота, получавшим влажную кукурузу, консервированную препаратом AIV 2000.

При практически одинаковом уровне переваримости сухого и органического веществ, жира и протеина, в сравнении контрольных бычков и животных III опытной группы, последние имели более высокие показатели по переваримости безазотистых экстрактивных веществ (на 1,1%) при снижении переваримости клетчатки на 2,6%.

Таким образом, на основании полученных результатов по переваримости питательных веществ рационов контрольной и опытных групп можно сделать заключение, что скармливание молодняку крупного рогатого скота влажного плющеного зерна кукурузы, консервированного препаратами кормоплюс-1 и кормоплюс-2, не оказало существенного влияния на изменение данных показателей, в сравнении с кормом, заготовленным с использованием консерванта AIV 2000.

Важным фактором, обеспечивающим высокую продуктивность животных, является максимальное использование ими азота корма, что свидетельствует об интенсивности белкового обмена в организме. Наиболее высокие показатели степени использования азота отмечены у молодняка опытных групп,

потреблявших с рационом влажное плющеное зерно кукурузы, консервированное препаратами кормоплюс (табл. 4).

Таблица 4 - Баланс азота

Показатели	Группы		
Показатели	l		III
Принято с кормом, г	88,8±0,2	87,7±2,8	86,5±5,0
Выделено с калом, г	34,0±2,2	33,2±4,5	32,7±6,7
Переварено, г	54,8±2,3	54,5±3,9	53,8±2,6
Выделено с мочой, г	26,6±9,6	20,5±5,4	24,9±1,4
Отложено, г	28,2±8,3	34,0±9,2	28,9±2,0
Отложено от принятого, %	31,8±9,4	38,8±9,9	33,4±4,3

Баланс азота во всех группах был положительный, отложение его в контрольной группе составило 28,2 г. Во II опытной группе, получавшей с рационом кукурузу с консервантом кормоплюс-1, отложение его по сравнению с контролем увеличилось на 5,8 г. При введении в рацион плющеного зерна, консервированного кормоплюс-2, баланс азота оказался ниже в сравнении со II опытной группой, однако отложение его в теле животных увеличилось на 0,7 г, или на 2,5% по сравнению с контролем.

Использование азота молодняком крупного рогатого скота опытных групп оказалось наибольшим по сравнению с контрольными животными - на 7,0 и 1,6%.

Баланс кальция и фосфора был положительным во всех подопытных группах (табл. 5). Наибольшее отложение кальция в организме отмечено у животных III опытной группы, потреблявшей кукурузу, консервированную кормоплюс-2. По сравнению с контролем эта разница составила 0,9 г, или 20%. В организме бычков II опытной группы отложилось несколько меньшее количество кальция, чем в III группе, однако разница по отношению к контролю составила 0,6 г или 13,3%. Аналогичная зависимость отмечена и по отложению кальция от принятого с кормами молодняком крупного рогатого скота.

Молодняк всех подопытных групп потреблял практически одинаковое количество фосфора (12,0-12,5 г), выделение из организма которого осуществлялось в основном с калом и в меньшей степени с мочой. у бычков контрольной группы с калом и мочой выделялось соответственно 62,5 и 3,3% фосфора от принятого с кормами рациона, у молодняка II и III опытных групп эти показатели находились на уровне 60,8 и 3,2% и 61,7 и 3,3%.

Таблица 5 - Баланс кальция и фосфора

Поколотови		Группы		
Показатели			III	
	Баланс кальция			
Принято с кормом, г	21,6±0,1	21,1±0,7	20,9±1,3	
Выделено с калом, г	16,8±1,4	15,7±0,9	15,1±2,6	
Усвоено, г	4,8±1,4	5,4±1,5	5,8±1,3	
Выделено с мочой, г	0,3±0,1	0,3±0,1	0,4±0,1	
Отложено, г	4,5±1,4	5,1±1,5	5,4±1,3	
Отложено от принятого, %	20,8±6,6	24,2±6,6	25,8±7,9	
	Баланс фосфора			
Принято с кормом, г	12,0±0,1	12,5±0,3	12,0±0,5	
Выделено с калом, г	7,5±0,5	7,6±0,5	7,4±2,1	
Усвоено, г	4,5±0,5	4,9±0,8	4,6±1,6	
Выделено с мочой, г	0,4±0,1	0,4±0,1	0,4±0,1	
Отложено, г	4,1±0,5	4,5±0,8	4,2±1,7	
Отложено от принятого, %	34,2±4,6	36,0±6,0	35,0±15,3	

Наиболее высокие показатели по отложению фосфора установлены у бычков II опытной группы. По сравнению с контрольными животными в организме бычков, потреблявших кукурузу с консервантом кормоплюс-1, данного элемента отложилось на 0,4 г, или на 9,8%, больше. Отложение фосфора от принятого также в данной группе было больше контроля на 1,8%.

В организме молодняка III опытной группы отложилось несколько меньшее количество фосфора по сравнению со II, однако на 2,4% больше, чем у контрольных животных. Аналогичная зависимость отмечена у животных, потреблявших влажное зерно кукурузы с консервантом кормоплюс-2, и по отложению фосфора от принятого с кормами рациона в сравнении с контрольными бычками.

Оценка физиологического состояния животных невозможна без исследования морфобиохимических показателей крови, которые приведены в таблице 6.

Таблица 6 – Морфобиохимические показатели крови молодняка крупного рогатого скота физиологического опыта

Показатели	Группы		
		11	111
1	2	3	4
Общий белок, г/л	69,0±1,0	67,2±2,5	69,0±1,0
Альбумины, г/л	34,0±0,5	32,4±1,0	34,9±0,2

Продолжение таблицы 6

проотжение тао			
1	2	3	4
Глобулины, г/л	35,0±1,4	34,8±1,8	34,1±0,9
Гемоглобин, г/%	8,8±0,5	9,3±0,1	8,7±0,3
Лейкоциты, тыс мм ³	10,1±0,9	12,7±2,3	9,3±0,8
Глюкоза, ммоль/л	6,2±0,1	6,1±0,1	5,67±0,3
Мочевина, ммоль/л	3,9±0,3	3,7±0,1	3,4±0,3
Кальций, ммоль/л	2,6±0,2	2,7±0,2	2,4±0,2
Фосфор, ммоль/л	1,7±0,1	1,5±0,1	1,5±0,1
Магний, ммоль/л	0,9±0,1	0,8±0,1	0,7±0,1
Железо, мкмоль/л	21,8±2,1	20,8±1,3	19,9±1,4
Эритроциты, млн шт/мм ³	5,6±0,1	5,6±0,3	5,3±0,2
Холестерин, ммоль/л	2,9±0,1	2,4±0,2	2,6±0,3
Каротин, мг%	0,73±0,03	0,72±0,02	0,72±0,03
Витамин А, мкг%	1,55±0,07	1,53±0,05	1,46±0,04
Билирубин общий, мкмоль/л	5,1±0,6	6,2±0,8	5,2±0,5
Кислотная емкость по Неводову, мг%	453±7	480±31	467±18

Исследования показали, что морфобиохимические показатели крови подопытных животных, потреблявших кукурузу с препаратами кормоплюс-1 и кормоплюс-2 не имели достоверных различий с контрольными животными.

Заключение. Результаты исследований позволяют утверждать, что включение в концентратную часть рационов крупного рогатого скота зерна, консервированного кормоплюс-1 и кормоплюс-2, оказывает положительное влияние на физиологическое состояние и переваримость питательных веществ и способствует повышению использования азота животными на 7,0 и 1,6%.

Литература. 1. Бильков, В. Плющение фуражного зерна. Опыт Волгоградской области / В. Бильков // АгроРынок. — 2003. — № 9. — С. 58. 2. Заготовка, хранение и использование плющеного зерна повышенной влажности // Белорусское сельское хозяйство. — 2004. — № 8. — С. 21-24. 3. Лурье, В. М. Химическое консервирование влажного фуражного зерна : обзорная информ. / В. М. Лурье, В. И. Анискин, Э. Р. Берзиньш ; ВНИИИТЭИСХ. — М., 1977. — 64 с. 4. Накладова, Т. М. Консерванты при заготовке силоса : (обзор) / Т. М. Накладова // Сельское хозяйство за рубежом. — 1980. — № 4. — С. 39-41. 5. Нефедов, Г. В выгодности финских консервантов убедились многие / Г. Нефедов // Животноводство России. — 2002. — № 4. — С. 18-19. 6. Перекопский, А. Н. Ресурсосберегающая техника. — 2002. — Т. 2. — С. 150-156. 7. Плющение и консервирование консервированием / А. Н. Перекопский // Экология и с.-х. техника. — 2002. — Т. 2. — С. 150-156. 7. Плющение и консервирование и консервированием и крентабельности животноводства / В. Н. Дашков [и др.] // Белорусское сельское хозяйство. — 2004. — № 3. — С. 21-22. 8. Рекомендации по рациональному использованию кормов в зимне-стойловый период 2004-2005 гг. // Белорусское сельское хозяйство. — 2004. — № 11. — С. 10-14. 9. Технология хранения зерна : учебник для вузов / под ред. Е. М. Вобликова. — СПб. : Лань, 2003. — 448 с.

УДК 636.2:637.5'62:577.115

РАСПРЕДЕЛЕНИЕ ЖИРА В ТЕЛЕ БЫЧКОВ МОЛОЧНЫХ И МЯСНЫХ ПОРОД

Козырь В.

Институт животноводства центральных районов УААН, Украина **Тюпина Н**.

Днепропетровский государственный аграрный университет, Украина

Интенсивное выращивание бычков способствует не только наращиванию общей живой массы, но и улучшает качественные показатели говядины, повышает ее питательную ценность.

Intensive cultivation of bull-calves promotes not only to escalating of the general live weight, but also improves beef quality indicators, raises its nutritional value.

Веедение. Энергетическая ценность говядины зависит от содержания в ней жира, который определяет ее вкусовые и кулинарные свойства. В то же время физико-химические качества жира, накопленного в разных частях тела, значительно отличаются. Большую роль в этом играет порода скота и интенсивность его выращивания. Животные специализированных мясных пород в более позднем возрасте начинают и менее интенсивно откладывать жир в теле. У них в общей массе жира преобладает межмускульный и внутримускульный жир, что придает говядине мраморность, нежность, сочность и аромат, тогда как у молочных пород более выражен полив (подкожный жир) и жир на внутренних органах, которые малопригодны в пищу. В связи с этим целесообразно внести некоторые коррективы в действующую методику определения упитанности поголовья, критерием которой в настоящее время является толщина полива.

Материал и методы. Изучение биологических особенностей отложения жира у крупного рогатого скота проводили в условиях степной зоны Украины. Группы аналогов 8-месячных бычков сформировались по 15 голов молочных пород — красная степная и черно-пестрая, комбинированных — симментальская и серая украинская, мясных — герефордская, абердин-ангусская, украинская мясная, шароле, светлая аквитанская. Условия кормления и содержания были одинаковыми до 30-месячного возраста животных.