Способ сухой минерализации основан на полном разложении органических веществ путем сжигания пробы в муфельной печи при контролируемом температурном режиме и состоит из трех последовательных этапов: высушивания, обутливания и озоления. Способ мокрой минерализации основан на полном разрушении органических веществ продукта концентрированной азотной кислотой с добавлением перекиси водорода при нагревании и предназначен для переведения в раствор небольших количеств пищевых продуктов животного происхождения с уровнем бета-активности более 37 Бк.

Радиохимический анализ включает в себя следующие этапы: выделение радиоизотопа, его очистка и идентификация, проверка радиохимической чистоты, измерение активности радиоизотопа (радиометрия).

Оценку содержания радионуклидов в исследуемых объектах проводят в соответствии с действующими на данное время республиканскими допустимыми уровням (РДУ). Результаты исследований сообщаются производителю (заказчику) на бланке «Экспертиза».

УДК 636.52/58-053.2:612.015.33

ВОЗРАСТНАЯ ДИНАМИКА АКТИВНОСТИ АМИНОТРАНСФЕРАЗ, ГЛУТУМАТДЕГИДРОГЕНАЗЫ, ОБЩЕГО БЕЛКА И НУКЛЕИНОВЫХ КИСЛОТ В ПЕЧЕНИ БРОЙЛЕРОВ КРОССА «СМЕНА – 2»

Котович И.В.

УО «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины»

Печени принадлежит важная роль в осуществлении и регуляции метаболических процессов, затрагивающих все виды обмена веществ. На нее приходится около 13 % всего белкового обмена организма. Здесь осуществляется синтез альбуминов, глобулинов, фибриногена, протромбина и других белков. В гепатоцитах происходит образование так называемого лабильного белка организма, который затем используется для снабжения других органов и тканей аминокислотами [5]. В метаболизме белков одно из ключевых мест занимает процесс трансаминирования, являющийся одним из путей биосинтеза заменимых аминокислот в организме животных и протекающий при участии аминотрансфераз. Наибольшее распространение среди ферментов этой группы имеют аспартатаминотрансфераза (АсТ) и аланинаминотрансфераза (АлТ). Трансаминирование связано с окислительным дезаминированием глутаминовой кислоты, катализируемым глутаматдегидрогеназой (ГлДГ).

Аминотрансферазы могут служить одним из тестов контроля метаболической функции печени. Увеличение их активности сопровождается усилением процессов белкового синтеза [1]. В то же время имеющиеся литературные данные не позволяют сделать определенные выводы о возрастной динамике активности этих ферментов в печени цыплят. ГлДГ, в отличие от аминотрансфераз, является гепатоспецифичным ферментом, однако данных по ее активности в онтогенезе бройлеров мы не обнаружили.

Целью нашей работы было исследование некоторых показателей белкового и нуклеинового обмена в печени цыплят-бройлеров в возрастном аспекте.

Исследования проведены на цыплятах-бройлерах кросса «Смена-2» Витебской бройлерной птицефабрики. Для эксперимента отбирали цыплят-бройлеров 10-, 20-, 30-, 40 и 46-дневного возраста. В каждый возрастной период в зависимости от живой массы были сформированы по 2 группы цыплят: 1-я соответствующая технологическим нормам и 2-я — ниже установленных производственных показателей. В 10-дневном возрасте (по 20 цыплят в каждой группе) живая масса бройлеров составила: 1-я группа 190,91 \pm 1,43 г, 2-я группа — 147,36 \pm 2,57 г, в 20-дневном (по 20 голов) — соответственно 566,90 \pm 4,50 и 404,30 \pm 1,51 г, в 30-дневном (по 10 голов) 1015,60 \pm 3,85 г и 651,30 \pm 4,63 г, в 40-дневном (по 8 цыплят) 1582,63 \pm 7,47г и 972,25 \pm 10,23 г и в 46-дневном (по 8 голов) – 1940,63 \pm 13,14 г и 1166,88 \pm 6,13 г.

Для изучения активности ферментов готовили гомогенаты печени с использованием 0,1 М трис-HCl буфера (pH - 7,45). Активность ферментов определяли с использованием наборов HTK «Анализ-Х». Конечное разведение тканей при определении активности аминотрансфераз составило 1:550, а при определении активности Γ лД Γ - 1: 825.

Содержание общего белка проводили по методу Брэдфорда, а нуклеиновых кислот по методу Шмидта-Таннгаузера в модификации Blobel G., Potter V.R. [2, 4]. Для этого готовили гомогенаты тканей (в соотношении 1:9) с использованием среды, включавшей 0,25 М раствор сахарозы, 0,05 М КС1 и 0,005 М МgC1₂.

Как показывают данные таблицы, наиболее существенные изменения исследованных показателей наблюдаются с 10-го по 20-й день жизни цыплят. Так, активность ГлДГ в 1-й группе бройлеров в этот период увеличивается на 22,32 % (P < 0,01), AcT — на 18,46 % (P < 0,05), AлТ — на 15,80 % (P < 0,05). Содержание общего белка возрастает на 10,39 % (P < 0,001), ДНК — на 11,84 % (P < 0,01) и РНК — на 14,03 % (P < 0,001). У цыплят с меньшей живой массой эти показатели составили соответственно 13,51 % (P > 0,05), 10,61 % (P > 0,05), 5,72 % (P > 0,05), 5,24 % (P < 0,05), 9,45 % (P < 0,01), 9,36 % (P < 0,05).

В то же время следует отметить, что по сравнению с проведенными нами ранее аналогичными исследованиями на суточных бройлерах, рост показателей во 2-ю декаду жизни цыплят несколько ниже [3]. Так, например, содержание белка к 10-у дню увеличивается в 1-й группе брой-

леров на 18,12% (P < 0,001), а активность AcT — на 25,77% (P < 0,01), а во 2-й группе цыплят - соответственно на 4,82% (P < 0,05) и 5,48% (P > 0,05). Данные изменения к 20-дневному возрасту, возможно, связаны и со снижением относительной скорости роста цыплят (с 128,89% до 99,23% в 1-й группе и с 124,26% до 93,15% во 2-й группе).

К 30-у дню рост показателей белкового и нуклеинового обмена также несколько снижается. Увеличение активности ГлДГ в этот период у бройлеров с более высокой живой массой составило 15,09 % (P < 0,05), АсТ -10,76 % (P > 0,05), содержания общего белка — на 7,90 % (P < 0,001), ДНК — на 2,26 % (P > 0,05), РНК — на 8,13 % (P < 0,01). У цыплят с меньшей живой массой увеличение аналогичных показателей по отношению к предыдущему возрастному периоду несколько ниже. Такая же тенденция сохраняется и у 40-дневных цыплят.

К концу срока выращивания бройлеров происходит снижение активности ГлДГ, АсТ, содержания общего белка и нуклеиновых кислот. В этот же период наблюдается и самая низкая относительная скорость роста цыплят (в 1-й группе 20,32 % и во 2-й 18,20 % по отношению к 40-дневному возрасту).

В отношении AiT с 20-го по 46-й день жизни бройлеров наблюдается разновекторное изменение активности. К 30-му дню происходит резкое снижение активности фермента — в 1-й группе цыплят на 48,34 % (P < 0,01) и во 2-й - на 50,02 % (P < 0,01). Затем активность AлT в обеих группах бройлеров увеличивается.

Таблица Активность аминотрансфераз, глутаматдегидрогеназы, (нкат/л), содержание общего белка и нуклеиновых кисло, (мг/л) в печени цыплят-бройлеров в возрастной динамике

Показа- тели	Группы цыплят	Возраст, дней				
		10	20	30	40	46
AcT	1	145,31 ±7,86	169,78 ±8,17*	188,05 ±9,20*	195,71 ±12,45*	164,18 ±6,84**
	2	130,37 ±6,48	144,43 ±5,69	153,27 ±8,18 26,23	155,04 ±9,21	123,79 ±7,18
АлТ	1	33,60 ±1,18	38,91 ±1,10*	±2,65	28,59 ±1,52	32,42 ±2,80
	2	30,95 ±1,80	32,72 ±2,21	21,81 ±2,00	23,29 ±1,95	25,35 ±2,16
ГлДГ	1	86,21 ±4,03	105,45 ±1,70***	121,36 ±3,54**	135,07 ±8,88*	126,00 ±9,58**
	2	76,93 ±4,48	87,32 ±3,17	97,05 ±3,72	102,13 ±4,35	88,42 ±4,80
Общий белок	1	133,73 ±1,53	147,63 ±1,21***	159,29 ±1,87***	168,9 3 ± 1,93***	161,36 ±2,92***
	2	128,64 ±1,61	135,38 ±1,53	142,54 ±1,37	149,15 ±2,66	143,18 ±1,65
днк	1	4,14 ±0,09	4,63 ±0,11*	4,86± 0,06***	4,97 ±0,08**	4,68 ±0,10
	2	3,91 ±0,08	4,28 ±0,07	4,46 ±0,03	4,54 ±0,05	4,38 ±0,12
РНК	1	6,06± 0,09**	6,91 ±0,11**	7,47± 0,08***	7,87± 0,09***	7,07 0,08***
	2	5,66 ±0,07	6,19± 0,14	6,56 ±0,16	6,77 ±0,11	6,19 ±0,11

Примечание: * P < 0,05 – по сравнению с цыплятами с меньшей живой массой

** P < 0,001 *** P < 0,001

Необходимо также отметить, что, в отличие от суточных бройлеров, в остальные возрастные периоды (10-46 дней) активность ГлДГ, аминотрансфераз, содержание общего белка и нуклеиновых кислот закономерно выше у цыплят с живой массой, соответствующей необходимым техногическим пара-метрам.

Таким образом, проведенные экспериментальные исследования позволяют сделать следующие выводы:

- 1. Изменение активности глутаматдегидрогеназы, аминотрансфераз, содержания общего белка и нуклеиновых кислот в печени цыплят-бройлеров находится в зависимости от интенсивности их роста. Наиболее существенное увеличение этих показателей в возрастной динамике установлено у 10 и 20-дневных цыплят. К концу периода выращивания бройлеров (46 дней) наблюдается снижение интенсивности белкового и нуклеинового обмена.
- 2. Активность ГлДГ, АсТ, АлТ, содержание общего белка, ДНК и РНК в печени цыплят с живой массой соответствующей технологической нормы закономерно выше по сравнению с бройлерами, имеющими в каждый возрастной период живую массу ниже установленных плановых производственных показателей.
- 3. Определение активности АсТ, ГлДГ, общего белка и РНК в печени бройлеров кросса «Смена-2» вместе с другими показателями можно использовать для оценки функционального состояния печени и при оценке хозяйственно-полезных признаков.

ЛИТЕРАТУРА. 1. Абдель Монем Эль Фики. Возрастные изменения газоэнергетического обмена и метаболической функции у цыплят-бройлеров: Автореф, дис. ... канд. биол. наук: 03.00.13/ Львовский зоовет. ин.-т. — Львов. - 1990. — 16 с. 2. Влияние цитоплазматических факторов, стимулирующих пролиферацию, и частичной гепатэктомии на синтез ДНК в печени в печени крыс, подвергнутых действих четыреххлористого углерода/
Абакумова О.Ю., Котаев А.Ю., Карагюлян С.Р. и др.// Вопросы мед. химии. — 1985. — Т. 31, вып. 5. — С. 95 — 97. 3. Практикум по биохимии/ Под ред. С.Е.Северина и Г.А.Соловьевой. — М., 1989. - С. 83. 4. Ферментные адаптации суточных цыплят-бройлеров/ Котович И.В., Баран В.П., Холод В.М., Бирман Б.Я.// Птицеводство Беларуси. — 2002. — № 3. — С. 14 — 16 5. Цехмістренко С.І. Деякі показники білкового обміну печінки курей в онтогенезі та при діі радіонуклідів// Вісник Білоцерківського державного університету. — Вип. 3, ч.1 — Біла Церква, 1997. С. 305 — 309.